Combinatorics arising from lax colimits of posets
Autor: | Zurab Janelidze, Helmut Prodinger, Francois van Niekerk |
---|---|
Rok vydání: | 2020 |
Předmět: |
06A07
05A19 18N10 Algebra and Number Theory Mathematics::Combinatorics Computational Theory and Mathematics Rings and Algebras (math.RA) Mathematics::Category Theory FOS: Mathematics Mathematics - Combinatorics Mathematics - Category Theory Category Theory (math.CT) Geometry and Topology Mathematics - Rings and Algebras Combinatorics (math.CO) |
DOI: | 10.48550/arxiv.2010.01623 |
Popis: | In this paper we study maximal chains in certain lattices constructed from powers of chains by iterated lax colimits in the $2$-category of posets. Such a study is motivated by the fact that in lower dimensions, we get some familiar combinatorial objects such as Dyck paths and Kreweras walks. Comment: 29 pages, 9 figures. Submitted for publication |
Databáze: | OpenAIRE |
Externí odkaz: |