Randomized incremental construction of Delaunay triangulations of nice point sets
Autor: | Olivier Devillers, Jean-Daniel Boissonnat, Marc Glisse, Kunal Dutta |
---|---|
Přispěvatelé: | Understanding the Shape of Data (DATASHAPE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria), Geometric Algorithms and Models Beyond the Linear and Euclidean realm (GAMBLE ), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE40-0017,ASPAG,Analyse et Simulation Probabilistes des Algorithmes Géométriques(2017), ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019), European Project: 339025,EC:FP7:ERC,ERC-2013-ADG,GUDHI(2014), Laboratoire Cogitamus, This work is supported by the European Research Council under Advanced Grant 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions). This work has also been supported by the French government, through the ANR project ASPAG (ANR-17-CE40-0017) and the 3IA Cˆote d’Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002., INRIA |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Probabilistic analysis
[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] 0102 computer and information sciences 02 engineering and technology Computer Science::Computational Geometry [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] 01 natural sciences Article Computational geometry Theoretical Computer Science Combinatorics 010104 statistics & probability Line segment Quadratic equation Randomized incremental construction Simple (abstract algebra) [MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] 0202 electrical engineering electronic engineering information engineering Discrete Mathematics and Combinatorics Probabilistic analysis of algorithms 0101 mathematics Mathematics average-case analysis Theory of computation 000 Computer science knowledge general works Delaunay triangulation 68Q87 Delaunay triangulations Regular polygon 020206 networking & telecommunications Binary logarithm 52C45 Flat torus 52C15 Computational Theory and Mathematics 52C17 010201 computation theory & mathematics Voronoi diagrams [MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] Computer Science Polyhedral surfaces 020201 artificial intelligence & image processing Geometry and Topology Voronoi diagram 52-08 |
Zdroj: | ESA 2019-27th Annual European Symposium on Algorithms ESA 2019-27th Annual European Symposium on Algorithms, Sep 2019, Munich, Germany. ⟨10.4230/LIPIcs.ESA.2019.22⟩ Discrete & Computational Geometry Discrete and Computational Geometry Discrete and Computational Geometry, Springer Verlag, 2020, 64, pp.33. ⟨10.1007/s00454-020-00235-7⟩ [Research Report] INRIA. 2019 Discrete and Computational Geometry, 2020, 64, pp.33. ⟨10.1007/s00454-020-00235-7⟩ |
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.4230/LIPIcs.ESA.2019.22⟩ |
Popis: | Randomized incremental construction (RIC) is one of the most important paradigms for building geometric data structures. Clarkson and Shor developed a general theory that led to numerous algorithms which are both simple and efficient in theory and in practice. Randomized incremental constructions are usually space-optimal and time-optimal in the worst case, as exemplified by the construction of convex hulls, Delaunay triangulations, and arrangements of line segments. However, the worst-case scenario occurs rarely in practice and we would like to understand how RIC behaves when the input is nice in the sense that the associated output is significantly smaller than in the worst case. For example, it is known that the Delaunay triangulation of nicely distributed points in $${\mathbb {E}}^d$$ E d or on polyhedral surfaces in $${\mathbb {E}}^3$$ E 3 has linear complexity, as opposed to a worst-case complexity of $$\Theta (n^{\lfloor d/2\rfloor })$$ Θ ( n ⌊ d / 2 ⌋ ) in the first case and quadratic in the second. The standard analysis does not provide accurate bounds on the complexity of such cases and we aim at establishing such bounds in this paper. More precisely, we will show that, in the two cases above and variants of them, the complexity of the usual RIC is $$O(n\log n)$$ O ( n log n ) , which is optimal. In other words, without any modification, RIC nicely adapts to good cases of practical value. At the heart of our proof is a bound on the complexity of the Delaunay triangulation of random subsets of $${\varepsilon }$$ ε -nets. Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of independent interest. |
Databáze: | OpenAIRE |
Externí odkaz: |