Confined Diffusion Without Fences of a G-Protein-Coupled Receptor as Revealed by Single Particle Tracking

Autor: Nicolas Destainville, Claire Millot, Laurence Salomé, David S. Dean, André Lopez, Frédéric Daumas
Přispěvatelé: Institut de pharmacologie et de biologie structurale (IPBS), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Physique Statistique des Systèmes Complexes (LPT) (PhyStat), Laboratoire de Physique Théorique (LPT), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Jazyk: angličtina
Předmět:
MESH: Signal Transduction
Receptors
Opioid
mu

Analytical chemistry
Gold Colloid
Kidney
Diffusion
Cell membrane
0302 clinical medicine
Bacteriophage T7
Nanotechnology
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
Diffusion (business)
MESH: Nanotechnology
MESH: Receptors
Cell Surface

0303 health sciences
Microscopy
Video

Chemistry
MESH: Models
Chemical

MESH: Diffusion
Microspheres
MESH: Staining and Labeling
medicine.anatomical_structure
Membrane
Colloidal gold
Signal transduction
Signal Transduction
MESH: GTP-Binding Proteins
MESH: Motion
MESH: Microspheres
Biophysics
Receptors
Cell Surface

MESH: Receptors
Opioid
mu

Models
Biological

Cell Line
Motion
03 medical and health sciences
GTP-Binding Protein Regulators
GTP-Binding Proteins
MESH: GTP-Binding Protein Regulators
medicine
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

MESH: Particle Size
Particle Size
MESH: Gold Colloid
030304 developmental biology
G protein-coupled receptor
Membranes
Staining and Labeling
Cell Membrane
MESH: Bacteriophage T7
MESH: Models
Biological

MESH: Kidney
Fibroblasts
MESH: Cell Line
MESH: Microscopy
Video

Models
Chemical

Membrane protein
MESH: Fibroblasts
Particle size
030217 neurology & neurosurgery
MESH: Cell Membrane
Zdroj: Biophysical Journal
Biophysical Journal, Biophysical Society, 2003, 84 (1), pp.356-66
ISSN: 0006-3495
1542-0086
DOI: 10.1016/S0006-3495(03)74856-5
Popis: International audience; Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the micro -opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients.
Databáze: OpenAIRE