Linear and Branching System Metrics

Autor: J., Hilston, de Alfaro, Luca, Faella, Marco, M.Z., Kwiatkowska, Telek, M., Stoelinga, Mariëlle Ida Antoinette
Přispěvatelé: L., de Alfaro, Faella, Marco, M., Stoelinga
Rok vydání: 2009
Předmět:
Pure mathematics
Computer science
Process calculus
0102 computer and information sciences
02 engineering and technology
01 natural sciences
Boolean algebra
metrics
symbols.namesake
EC Grant Agreement nr.: FP7/214755
Computer Science::Logic in Computer Science
Formal language
0202 electrical engineering
electronic engineering
information engineering

EWI-16577
Temporal logic
Equivalence (formal languages)
Boolean function
Equivalence (measure theory)
Bisimulation
Modal logic
Linear system
simulation
METIS-264177
Specification techniques
Metric space
Logics of programs
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
010201 computation theory & mathematics
TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS
symbols
020201 artificial intelligence & image processing
IR-68677
EC Grant Agreement nr.: IST-004527
EC Grant Agreement nr.: FP7-ICT-2007-1
Algorithm
Software
Zdroj: IEEE transactions on software engineering, 35(2):10.1109/TSE.2008.106, 258-273. IEEE
ISSN: 1939-3520
0098-5589
DOI: 10.1109/tse.2008.106
Popis: We extend the classical system relations of trace inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as elements of arbitrary metric spaces. Trace inclusion and equivalence give rise to asymmetrical and symmetrical linear distances, while simulation and bisimulation give rise to asymmetrical and symmetrical branching distances. We study the relationships among these distances and we provide a full logical characterization of the distances in terms of quantitative versions of LTL and mu-calculus. We show that, while trace inclusion (respectively, equivalence) coincides with simulation (respectively, bisimulation) for deterministic boolean transition systems, linear and branching distances do not coincide for deterministic metric transition systems. Finally, we provide algorithms for computing the distances over finite systems, together with a matching lower complexity bound.
Databáze: OpenAIRE