Traveling waves for fourth order parabolic equations

Autor: Jan Bouwe van den Berg, Josephus Hulshof, Robertus C. Vandervorst
Přispěvatelé: Mathematical Analysis, Mathematics
Jazyk: angličtina
Rok vydání: 2001
Předmět:
Zdroj: SIAM Journal on Mathematical Analysis, 32(6), 1342-1374. Society for Industrial and Applied Mathematics Publications
van den Berg, G J B, Hulshof, J & van der Vorst, R C A M 2001, ' Traveling waves for fourth order parabolic equations ', SIAM Journal on Mathematical Analysis, vol. 32, no. 6, pp. 1342-1374 . https://doi.org/10.1137/S0036141099358300
ISSN: 0036-1410
DOI: 10.1137/S0036141099358300
Popis: We study travelling wave solutions for a class of fourth order parabolic equations. Travelling wave fronts of the form u(x, t )= U (x + ct), connecting homogeneous states, are proven to exist in various cases: connections between two stable states, as well as connections between an unstable and a stable state, are considered.
Databáze: OpenAIRE