Dualization in lattices given by implicational bases

Autor: Lhouari Nourine, Oscar Defrain
Přispěvatelé: Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne (UCA), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Theoretical Computer Science
Theoretical Computer Science, Elsevier, 2020, 814, pp.169-176. ⟨10.1016/j.tcs.2020.01.028⟩
Theoretical Computer Science, 2020, 814, pp.169-176. ⟨10.1016/j.tcs.2020.01.028⟩
ISSN: 1879-2294
0304-3975
DOI: 10.1016/j.tcs.2020.01.028⟩
Popis: It was recently proved that the dualization in lattices given by implicational bases is impossible in output-polynomial time unless P=NP. In this paper, we~show that this result holds even when the premises in the implicational base are of size at most two. Then we show using hypergraph dualization that the problem can be solved in output quasi-polynomial time whenever the implicational base has bounded independent-width, defined as the size of a maximum set of implications having independent conclusions. Lattices that share this property include distributive lattices coded by the ideals of an interval order, when both the independent-width and the size of the premises equal one.
Comment: 11 pages, 2 figures
Databáze: OpenAIRE