Momentum distribution and coherence of a weakly interacting Bose gas after a quench
Autor: | Nicolas Pavloff, Alessandro Fabbri, Pierre-Élie Larré, Giovanni I. Martone |
---|---|
Přispěvatelé: | Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Physics
Bose gas Computation Time evolution FOS: Physical sciences Observable General Relativity and Quantum Cosmology (gr-qc) Degree of coherence 16. Peace & justice 01 natural sciences General Relativity and Quantum Cosmology [PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] 010305 fluids & plasmas Classical mechanics Exact solutions in general relativity Matter waves and collective properties of cold atoms and molecules Quantum Gases (cond-mat.quant-gas) 0103 physical sciences [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] Condensed Matter - Quantum Gases 010306 general physics Coherence (physics) Curse of dimensionality |
Zdroj: | Phys.Rev.A Phys.Rev.A, 2018, 98 (6), pp.063617. ⟨10.1103/PhysRevA.98.063617⟩ |
DOI: | 10.1103/PhysRevA.98.063617⟩ |
Popis: | We consider a weakly interacting uniform atomic Bose gas with a time-dependent nonlinear coupling constant. By developing a suitable Bogoliubov treatment we investigate the time evolution of several observables, including the momentum distribution, the degree of coherence in the system, and their dependence on dimensionality and temperature. We rigorously prove that the low-momentum Bogoliubov modes remain frozen during the whole evolution, while the high-momentum ones adiabatically follow the change in time of the interaction strength. At intermediate momenta we point out the occurrence of oscillations, which are analogous to Sakharov oscillations. We identify two wide classes of time-dependent behaviors of the coupling for which an exact solution of the problem can be found, allowing for an analytic computation of all the relevant observables. A special emphasis is put on the study of the coherence property of the system in one spatial dimension. We show that the system exhibits a smooth "light-cone effect," with typically no prethermalization. 24 pages, 12 figures |
Databáze: | OpenAIRE |
Externí odkaz: |