Biocatalytic Synthesis of Non-Standard Amino Acids by a Decarboxylative Aldol Reaction

Autor: Eric Geunes, Andrew Buller, Craig Bingman, Prasanth Kumar, Meghan Campbell, Jonathan Ellis
Rok vydání: 2021
DOI: 10.26434/chemrxiv.14544666
Popis: Enzymes are renowned for their catalytic efficiency and selectivity, but relatively few carbon-carbon bond forming enzymes have found their way into the biocatalysis toolbox. While engineering can overcome the challenges associated with C-C bond formation for some enzyme systems, the broader synthetic potential of biocatalysis is hindered by the lack of high-quality C-C bond forming transformations. Here we show that the enzyme UstD performs a highly selective decarboxylative aldol addition with diverse aldehyde substrates to make non-standard, γ-hydroxy amino acids. We increased the activity of UstD through three rounds of classic directed evolution and an additional round of computationally-guided engineering. The enzyme that emerged, UstD2.0, is efficient in a whole-cell biocatalysis format, which circumvents the need for enzyme purification, thereby facilitating its use in traditional organic settings. This new, highly stereoselective enzyme represents a unique expansion of the biosynthetic toolbox. The products are highly desirable, functionally rich bioactive γ-hydroxy amino acids that we demonstrate can be prepared stereoselectively on gram-scale. The X-ray crystal structure of UstD2.0 at 2.25 Å reveals the active site and the molecular basis for the remarkably promiscuity of this catalyst. Taking inspiration from the versatile reactivity of enamines in organic synthesis, we hypothesize that the enamine intermediate of UstD can be engineered to react with electrophiles other than aldehydes. The advent of structural information enabled by engineering of UstD2.0 provides a foundation for probing the unique mechanism of UstD and will guide efforts to expand the reactivity of this unique enzyme.
Databáze: OpenAIRE