A fast, independent dose check of HDR plans
Autor: | Martin Lachaine, Jason C. Gorman, Madeline G. Palisca |
---|---|
Rok vydání: | 2003 |
Předmět: |
Computer science
Radioactive source medicine.medical_treatment Software Validation Brachytherapy brachytherapy HDR Frame of reference law.invention Radiotherapy High-Energy Software law independent check Code (cryptography) medicine Humans Radiation Oncology Physics Radiology Nuclear Medicine and imaging Cartesian coordinate system Operations management Instrumentation Mathematical Computing Radiation Medical Errors business.industry Radiotherapy Planning Computer-Assisted Ranging Dose rate business Algorithm |
Zdroj: | Journal of Applied Clinical Medical Physics |
ISSN: | 1526-9914 |
Popis: | High dose rate (HDR) brachytherapy often involves optimization routines to calculate the dwell times and positions of a radioactive source along specified applicator paths. These routines optimize the dwells in such a way as to deliver the prescribed dose at one or more points while satisfying various constraints. The importance of independently verifying the doses calculated by the optimization software prior to treatment delivery has been recognized in various works, and is a requirement of various regulatory agencies. Most previous methods are specific to particular treatment configurations, or require a full replanning of the case. In this work we describe an in‐house software which provides an independent verification of dose calculations in less than 3 min, which adds negligible additional waiting time for the patient, regardless of the number of applicators, paths of the applicators, or complexity of the dwell times and positions. In order to verify errors which may occur between the planning and delivery stages, the verification code directly uses the treatment file used to control the HDR afterloader to compute the dose. Since this file references the source positions in the frame of reference of the catheters, an algorithm is described to convert these positions to Cartesian coordinates. We validate the code for various arbitrary cases ranging from a single catheter to complex multicatheter plans, and show results for various clinical plans. The maximum discrepancy observed for these clinical plans is 2%. PACS number(s): 87.53.–j, 87.90.+y |
Databáze: | OpenAIRE |
Externí odkaz: |