Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population
Autor: | Kristina Bonham, Loren J. Field, Els Henckaerts, Eric Adler, Geoffrey W. Abbott, Marion Kennedy, R. Michael Linden, Mark H. Soonpaa, Lei Yang, Torsten K. Roepke, Gordon Keller, Steven J. Kattman |
---|---|
Rok vydání: | 2008 |
Předmět: |
Vascular Endothelial Growth Factor A
Patch-Clamp Techniques Cellular differentiation Bone Morphogenetic Protein 4 Embryoid body Biology Cell Line chemistry.chemical_compound Humans Cell Lineage Myocytes Cardiac Progenitor cell Embryonic Stem Cells Multidisciplinary Cell Differentiation Kinase insert domain receptor Vascular Endothelial Growth Factor Receptor-2 Embryonic stem cell Activins Cell biology Vascular endothelial growth factor Proto-Oncogene Proteins c-kit Vascular endothelial growth factor A chemistry Bone Morphogenetic Proteins Immunology Intercellular Signaling Peptides and Proteins Fibroblast Growth Factor 2 Stem cell |
Zdroj: | Nature. 453:524-528 |
ISSN: | 1476-4687 0028-0836 |
DOI: | 10.1038/nature06894 |
Popis: | The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1(+) (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDR(low)/C-KIT(CD117)(neg) population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDR(low)/C-KIT(neg) cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDR(low)/C-KIT(neg) fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development. |
Databáze: | OpenAIRE |
Externí odkaz: |