Multi-scale Coupled Processes Modeling of Fractures as Porous, Interfacial and Granular Systems from Rock Images with the Numerical Manifold Method
Autor: | Mengsu Hu, Jonny Rutqvist |
---|---|
Rok vydání: | 2021 |
Předmět: |
Resources Engineering and Extractive Metallurgy
0211 other engineering and technologies 02 engineering and technology Coupled processes Rock images Geological & Geomatics Engineering Civil Engineering Physics::Geophysics Stress (mechanics) Deformation band Contact dynamics Microscale chemistry 021102 mining & metallurgy 021101 geological & geomatics engineering Civil and Structural Engineering Shearing (physics) Deformation (mechanics) Discrete fracture networks Geology Mechanics Geotechnical Engineering and Engineering Geology Computational geometry Coupling (physics) Discontinuous asperities and granular systems Fracture (geology) Friction and shear zone |
Zdroj: | Rock Mechanics and Rock Engineering, vol 55, iss 5 |
ISSN: | 1434-453X 0723-2632 |
DOI: | 10.1007/s00603-021-02455-6 |
Popis: | The greatest challenges of rigorously modeling coupled hydro-mechanical processes in fractured rocks at different scales are associated with computational geometry. In addition, selections of continuous or discontinuous models, physical laws, and coupling priorities at different scales based on different geometric features determine the applicability of a numerical model for a certain type of problem. In this study, we present our multi-scale modeling capabilities that have been developed based on the numerical manifold method for analyzing coupled hydro-mechanical processes in fractured rocks. Based on their geometric features, the fractures are modeled as continua—finite-thickness porous zones, and discontinua—discontinuous interfaces and microscale asperities and granular systems. Different governing equations, physical laws, coupling priorities, and approaches for addressing fracture intersections and shearing are then applied to describe these. We applied these models to simulate coupled processes in fractured rocks using realistic geometry obtained from rock images at different scales. We first calculated shearing of a single fracture with different models and demonstrated the impacts of asperities on shearing. We then applied the continuous and discontinuous models to simulate a network of rough fractures, demonstrating that contact dynamics contribute significantly to the geometric, multi-physical evolution of systems where rough fractures are not mineral filled. For a discrete fracture network, our coupled processes modeling demonstrates that shearing of the discrete fractures can have a major impact on stress and pore pressure distribution. Lastly, we applied the discontinuous granular model to simulate evolution of a complex granular system with a deformation band, demonstrating that the deformation band can dominate contact dynamics, the structural and the stress evolution of the granular system. |
Databáze: | OpenAIRE |
Externí odkaz: |