Study of a High Order Family: Local Convergence and Dynamics
Autor: | Íñigo Sarría, Cristina Amorós, Á. Alberto Magreñán, Rubén González, Lara Orcos, Ioannis K. Argyros |
---|---|
Rok vydání: | 2019 |
Předmět: |
Iterative method
lcsh:Mathematics General Mathematics high order dynamics 010103 numerical & computational mathematics lcsh:QA1-939 01 natural sciences Local convergence 010101 applied mathematics Nonlinear system Computer Science (miscellaneous) local convergence Applied mathematics sixteenth order convergence method Ball (mathematics) 0101 mathematics High order Engineering (miscellaneous) |
Zdroj: | Mathematics Volume 7 Issue 3 RIUR. Repositorio Institucional de la Universidad de La Rioja instname Mathematics, Vol 7, Iss 3, p 225 (2019) |
ISSN: | 2227-7390 |
DOI: | 10.3390/math7030225 |
Popis: | The study of the dynamics and the analysis of local convergence of an iterative method, when approximating a locally unique solution of a nonlinear equation, is presented in this article. We obtain convergence using a center-Lipschitz condition where the ball radii are greater than previous studies. We investigate the dynamics of the method. To validate the theoretical results obtained, a real-world application related to chemistry is provided. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |