Use of reduced forms in the disturbance decoupling problem
Autor: | Albert Compta, Josep Ferrer, Marta Peña |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions |
Rok vydání: | 2009 |
Předmět: |
(A
B)-Invariant subspaces Stability (learning theory) Invariant subspaces Controllability subspaces 93C Control systems guided systems [Control] Disturbance decoupling problem Control theory 93 Systems Theory Control::93C Control systems guided systems [Classificació AMS] Discrete Mathematics and Combinatorics Invariant (mathematics) Control::93B Controllability observability and system structure [Classificació AMS] Mathematics 93 Systems Theory [Classificació AMS] Numerical Analysis Algebra and Number Theory Basis (linear algebra) Invariant subspace Matemàtiques i estadística [Àrees temàtiques de la UPC] Decoupling (cosmology) Linear subspace 93B Controllability observability and system structure [Control] Controllability Geometry and Topology Molinari reduced form Subspace topology |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya instname |
ISSN: | 0024-3795 |
DOI: | 10.1016/j.laa.2008.04.033 |
Popis: | Specific algorithms, such as those involving the supremal of the invariant subspaces contained in a suitable subspace, are known to be able to test whether a disturbance decoupling problem (DDP) is solvable. Here, by reducing the system to its Molinari form, we obtain an alternative description of this supremal object and compute its dimension. Hence we have a general result for solving the decoupling provided that a Molinari basis is known. In particular, a necessary numerical condition for it is derived. The same technique is applied to the DDPS, that is, when stability of the decoupled closed loop system is required. |
Databáze: | OpenAIRE |
Externí odkaz: |