Predicting Factors Associated with Hypoglycemia Reduction with Automated Predictive Insulin Suspension in Patients at High Risk of Severe Hypoglycemia: An Analysis from the SMILE Randomized Trial

Autor: Aklilu Habteab, Ohad Cohen, Julien Da Silva, Simona de Portu, Javier Castañeda, John H. Shin, Harold W. de Valk, Sandrine Lablanche, Linda Vorrink-de Groot, Emanuele Bosi, Pratik Choudhary
Přispěvatelé: Habteab, A., Castaneda, J., De Valk, H., Choudhary, P., Bosi, E., Lablanche, S., De Portu, S., Da Silva, J., Vorrink-De Groot, L., Shin, J., Cohen, O.
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Diabetes Technology & Therapeutics
ISSN: 1557-8593
1520-9156
Popis: Background: This analysis from the SMILE randomized study was performed to identify predictive factors associated with the greatest reductions in hypoglycemia with the Medtronic MiniMed™ 640G Suspend before low feature in adults with type 1 diabetes at high risk of severe hypoglycemia. Methods: Clinical and treatment-related factors associated with decreased sensor hypoglycemia (SH) were identified in participants from the intervention arm by univariate and multivariate analyses. Results: The reduction in SH events
Databáze: OpenAIRE