Improved hypothesis testing in a general multivariate elliptical model

Autor: Tatiane F. N. Melo, Alexandre G. Patriota, Silvia Ferrari
Rok vydání: 2017
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Popis: This paper investigates improved testing inferences under a general multivariate elliptical regression model. The model is very flexible in terms of the specification of the mean vector and the dispersion matrix, and of the choice of the error distribution. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal and Student-t distributions as special cases. We obtain Skovgaard's adjusted likelihood ratio (LR) statistics and Barndorff-Nielsen's adjusted signed LR statistics and we compare the methods through simulations. The simulations suggest that the proposed tests display superior finite sample behaviour as compared to the standard tests. Two applications are presented in order to illustrate the methods.
Databáze: OpenAIRE