Optimized Mining of Potential Positive and Negative Association Rules

Autor: Parfait Bemarisika, André Totohasina
Přispěvatelé: Laboratoire d'Informatique et de Mathématiques (LIM), Université de La Réunion (UR), Université d'Antananarivo, Bellatreche, Ladjel, Chakravarthy, Sharma, Univ, Réunion
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: International Conference on Big Data Analytics and Knowledge Discovery-DaWaK 2017
Big Data Analytics and Knowledge Discovery – 19th International Conference, DaWaK 2017
Big Data Analytics and Knowledge Discovery – 19th International Conference, DaWaK 2017, Aug 2017, Lyon, France. pp.424-432
Big Data Analytics and Knowledge Discovery ISBN: 9783319642826
DaWaK
Popis: The negative association rules are less explored compared to the positive rules. The existing models are limited to the structure of binary data requiring of the repetitive accesses to the context, and the traditional couple support-confiance which is not effective in the presence of the dense data. For that, we propose a new model of optimization by using a new structure of data, noted MatriceSupport, and a new more selective couple, support-\(M_{GK}\).
Databáze: OpenAIRE