On the spectrum for the genera of maximal curves over small fields
Autor: | Fernando Torres, Saeed Tafazolian, Nazar Arakelian |
---|---|
Rok vydání: | 2016 |
Předmět: |
Algebra and Number Theory
Mathematics - Number Theory Computer Networks and Communications Applied Mathematics 010102 general mathematics Spectrum (functional analysis) Order (ring theory) 0102 computer and information sciences 01 natural sciences Microbiology Combinatorics Mathematics - Algebraic Geometry Finite field 010201 computation theory & mathematics FOS: Mathematics Discrete Mathematics and Combinatorics Number Theory (math.NT) 0101 mathematics Algebraic Geometry (math.AG) Mathematics |
DOI: | 10.48550/arxiv.1609.04797 |
Popis: | Motivated by previous computations in Garcia, Stichtenoth and Xing (2000) paper [ 11 ], we discuss the spectrum \begin{document}$\mathbf{M}(q^2)$\end{document} for the genera of maximal curves over finite fields of order \begin{document}$q^2$\end{document} with \begin{document}$7≤ q≤ 16$\end{document} . In particular, by using a result in Kudo and Harashita (2016) paper [ 22 ], the set \begin{document}$\mathbf{M}(7^2)$\end{document} is completely determined. |
Databáze: | OpenAIRE |
Externí odkaz: |