Dynamic interplay between RPL3- and RPL3L-containing ribosomes modulates mitochondrial activity in the mammalian heart

Autor: Ivan Milenkovic, Helaine Graziele Santos Vieira, Morghan C Lucas, Jorge Ruiz-Orera, Giannino Patone, Scott Kesteven, Jianxin Wu, Michael Feneley, Guadalupe Espadas, Eduard Sabidó, Norbert Hubner, Sebastiaan van Heesch, Mirko Voelkers, Eva Maria Novoa
Rok vydání: 2021
Předmět:
DOI: 10.1101/2021.12.04.471171
Popis: The existence of naturally occurring ribosome heterogeneity is now a well-acknowledged phenomenon. However, whether this heterogeneity leads to functionally diverse ‘specialized ribosomes’ is still a controversial topic. Here, we explore the biological function of RPL3L (uL3L), a ribosomal protein (RP) paralog of RPL3 (uL3) that is exclusively expressed in muscle and heart tissues, by generating a viable homozygousRpl3lknockout mouse strain. We identify a rescue mechanism in which, upon RPL3L depletion, RPL3 becomes upregulated, yielding RPL3-containing ribosomes instead of RPL3L-containing ribosomes that are typically found in cardiomyocytes. Using both ribosome profiling (Ribo-Seq) and a novel orthogonal approach consisting of ribosome pulldown coupled to nanopore sequencing (Nano-TRAP), we find that RPL3L neither modulates translational efficiency nor ribosome affinity towards a specific subset of transcripts. By contrast, we show that depletion of RPL3L leads to increased ribosome-mitochondria interactions in cardiomyocytes, which is accompanied by a significant increase in ATP levels, potentially as a result of mitochondrial activity fine-tuning. Our results demonstrate that the existence of tissue-specific RP paralogs does not necessarily lead to enhanced translation of specific transcripts or modulation of translational output. Instead, we reveal a complex cellular scenario in which RPL3L modulates the expression of RPL3, which in turn affects ribosomal subcellular localization and, ultimately, mitochondrial activity.
Databáze: OpenAIRE