Minimax bounds for estimating multivariate Gaussian location mixtures

Autor: Arlene K. H. Kim, Adityanand Guntuboyina
Rok vydání: 2020
Předmět:
DOI: 10.48550/arxiv.2012.00444
Popis: We prove minimax bounds for estimating Gaussian location mixtures on $\mathbb{R}^d$ under the squared $L^2$ and the squared Hellinger loss functions. Under the squared $L^2$ loss, we prove that the minimax rate is upper and lower bounded by a constant multiple of $n^{-1}(\log n)^{d/2}$. Under the squared Hellinger loss, we consider two subclasses based on the behavior of the tails of the mixing measure. When the mixing measure has a sub-Gaussian tail, the minimax rate under the squared Hellinger loss is bounded from below by $(\log n)^{d}/n$. On the other hand, when the mixing measure is only assumed to have a bounded $p^{\text{th}}$ moment for a fixed $p > 0$, the minimax rate under the squared Hellinger loss is bounded from below by $n^{-p/(p+d)}(\log n)^{-3d/2}$. These rates are minimax optimal up to logarithmic factors.
Databáze: OpenAIRE