The Voisin map via families of extensions
Autor: | Huachen Chen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Degree (graph theory)
Triangulated category General Mathematics 010102 general mathematics 01 natural sciences Moduli space Blowing up Combinatorics Mathematics - Algebraic Geometry Scheme (mathematics) 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics Variety (universal algebra) Locus (mathematics) Algebraic Geometry (math.AG) Quotient Mathematics |
Popis: | We prove that given a cubic fourfold $Y$ not containing any plane, the Voisin map $v: F(Y)\times F(Y) \dashrightarrow Z(Y)$ constructed in \cite{Voi}, where $F(Y)$ is the variety of lines and $Z(Y)$ is the Lehn-Lehn-Sorger-van Straten eightfold, can be resolved by blowing up the incident locus $\Gamma \subset F(Y)\times F(Y)$ endowed with the reduced scheme structure. Moreover, if $Y$ is very general, then this blowup is a relative Quot scheme over $Z(Y)$ parametrizing quotients in a heart of a Kuznetsov component of $Y.$ Comment: 16 pages, comments are welcome |
Databáze: | OpenAIRE |
Externí odkaz: |