The Increased Amyloidogenicity of Spike RBD and pH-Dependent Binding to ACE2 May Contribute to the Transmissibility and Pathogenic Properties of SARS-CoV-2 Omicron as Suggested by In Silico Study
Autor: | Anna Y. Aksenova, Ilya V. Likhachev, Sergei Y. Grishin, Oxana V. Galzitskaya |
---|---|
Rok vydání: | 2022 |
Předmět: |
SARS-CoV-2
Organic Chemistry COVID-19 Omicron Spike RBD amyloidogenic properties molecular modeling General Medicine Peptidyl-Dipeptidase A Hydrogen-Ion Concentration Catalysis Computer Science Applications Inorganic Chemistry Spike Glycoprotein Coronavirus Humans Angiotensin-Converting Enzyme 2 Physical and Theoretical Chemistry Molecular Biology Spectroscopy |
Zdroj: | International Journal of Molecular Sciences; Volume 23; Issue 21; Pages: 13502 |
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms232113502 |
Popis: | SARS-CoV-2 is a rapidly evolving pathogen that has caused a global pandemic characterized by several consecutive waves. Based on epidemiological and NGS data, many different variants of SARS-CoV-2 were described and characterized since the original variant emerged in Wuhan in 2019. Notably, SARS-CoV-2 variants differ in transmissibility and pathogenicity in the human population, although the molecular basis for this difference is still debatable. A significant role is attributed to amino acid changes in the binding surface of the Spike protein to the ACE2 receptor, which may facilitate virus entry into the cell or contribute to immune evasion. We modeled in silico the interaction between Spike RBDs of Wuhan-Hu-1, Delta, and Omicron BA.1 variants and ACE2 at different pHs (pH 5 and pH 7) and showed that the strength of this interaction was higher for the Omicron BA.1 RBD compared to Wuhan-Hu-1 or Delta RBDs and that the effect was more profound at pH 5. This finding is strikingly related to the increased ability of Omicron variants to spread in the population. We also noted that during its spread in the population, SARS-CoV-2 evolved to a more charged, basic composition. We hypothesize that the more basic surface of the Omicron variant may facilitate its spread in the upper respiratory tract but not in the lower respiratory tract, where pH estimates are different. We calculated the amyloidogenic properties of Spike RBDs in different SARS-CoV-2 variants and found eight amyloidogenic regions in the Spike RBDs for each of the variants predicted by the FoldAmyloid program. Although all eight regions were almost identical in the Wuhan to Gamma variants, two of them were significantly longer in both Omicron variants, making the Omicron RBD more amyloidogenic. We discuss how the increased predicted amyloidogenicity of the Omicron variants RBDs may be important for protein stability, influence its interaction with ACE2 and contribute to immune evasion. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |