Tubes and bubbles topological confinement of YouTube recommendations

Autor: Antoine Mazières, Telmo Menezes, Camille Roth
Přispěvatelé: Centre Marc Bloch (CMB), Ministère de l'Europe et des Affaires étrangères (MEAE)-Bundesministerium für Bildung und Forschung-Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)-Centre National de la Recherche Scientifique (CNRS), Centre d'Analyse et de Mathématique sociales (CAMS), École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE38-0001,ALGODIV,Algodiv: Recommandation algorithmique et diversité des informations du web(2015), European Project: 772743,Socsemics, Mazieres, Antoine, Algodiv: Recommandation algorithmique et diversité des informations du web - - ALGODIV2015 - ANR-15-CE38-0001 - AAPG2015 - VALID, Socio-semantic bubbles of internet communities - Socsemics - 772743 - INCOMING
Jazyk: angličtina
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
Topography
Computer science
[SHS.SOCIO] Humanities and Social Sciences/Sociology
Entropy
Video Recording
Social Sciences
02 engineering and technology
Elections
Infographics
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Geographical Locations
Computer Science - Computers and Society
Mathematical and Statistical Techniques
0508 media and communications
Empirical research
Sociology
[STAT.AP] Statistics [stat]/Applications [stat.AP]
[SHS.STAT] Humanities and Social Sciences/Methods and statistics
0202 electrical engineering
electronic engineering
information engineering

Plateaus
[STAT.AP]Statistics [stat]/Applications [stat.AP]
Multidisciplinary
[STAT.ME] Statistics [stat]/Methodology [stat.ME]
[SHS.SOCIO]Humanities and Social Sciences/Sociology
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
Mathematical Models
Physics
[INFO.INFO-SI] Computer Science [cs]/Social and Information Networks [cs.SI]
05 social sciences
Computer Science - Social and Information Networks
Online Encyclopedias
Nonlinear Sciences - Adaptation and Self-Organizing Systems
Europe
Physical Sciences
Thermodynamics
Medicine
The Internet
France
Graphs
Adaptation and Self-Organizing Systems (nlin.AO)
[STAT.ME]Statistics [stat]/Methodology [stat.ME]
Algorithms
Research Article
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
Computer and Information Sciences
[INFO.INFO-WB] Computer Science [cs]/Web
Political Science
[SHS.INFO]Humanities and Social Sciences/Library and information sciences
Science
FOS: Physical sciences
050801 communication & media studies
Research and Analysis Methods
Topology
[SHS.INFO] Humanities and Social Sciences/Library and information sciences
[INFO.INFO-SI]Computer Science [cs]/Social and Information Networks [cs.SI]
[INFO.INFO-CY]Computer Science [cs]/Computers and Society [cs.CY]
Computers and Society (cs.CY)
Humans
Social media
Mass Media
European Union
Social and Information Networks (cs.SI)
Landforms
Internet
business.industry
Data Visualization
[INFO.INFO-WB]Computer Science [cs]/Web
Geomorphology
020207 software engineering
Communications
[INFO.INFO-CY] Computer Science [cs]/Computers and Society [cs.CY]
Random Walk
People and Places
Earth Sciences
Encyclopedias
business
Social Media
Zdroj: PLoS ONE, Vol 15, Iss 4, p e0231703 (2020)
PLoS ONE
PLoS ONE, Public Library of Science, 2020, 15 (4), pp.e0231703
PLOS ONE
PLoS ONE, 2020, 15 (4), pp.e0231703
ISSN: 1932-6203
Popis: The role of recommendation algorithms in online user confinement is at the heart of a fast-growing literature. Recent empirical studies generally suggest that filter bubbles may principally be observed in the case of explicit recommendation (based on user-declared preferences) rather than implicit recommendation (based on user activity). We focus on YouTube which has become a major online content provider but where confinement has until now been little-studied in a systematic manner. Starting from a diverse number of seed videos, we first describe the properties of the sets of suggested videos in order to design a sound exploration protocol able to capture latent recommendation graphs recursively induced by these suggestions. These graphs form the background of potential user navigations along non-personalized recommendations. From there, be it in topological, topical or temporal terms, we show that the landscape of what we call mean-field YouTube recommendations is often prone to confinement dynamics. Moreover, the most confined recommendation graphs i.e., potential bubbles, seem to be organized around sets of videos that garner the highest audience and thus plausibly viewing time.
Comment: 10 pages, 7 figures, 1 table
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje