GPS single-frequency orbit determination for low Earth orbiting satellites

Autor: Adrian Jäggi, Heike Bock, Rolf Dach, Gerhard Beutler, Stefan Schaer
Rok vydání: 2009
Předmět:
Zdroj: Advances in Space Research
ISSN: 0273-1177
DOI: 10.1016/j.asr.2008.12.003
Popis: The determination of high-precision orbits for Low Earth Orbiting (LEO) satellites (e.g., CHAMP, GRACE, MetOp-A) is based on dual-frequency tracking data from on-board GPS (Global Positioning System) receivers. The two frequencies allow it to eliminate the first order ionosphere effects. Data screening and precise orbit determination (POD) procedures are optimized under the assumption of the availability of two frequencies. If only single-frequency data is available, the algorithms have to be modified to consider the ionospheric effect. We develop and study different approaches for POD with single-frequency data. Reduced-dynamic as well as kinematic POD techniques using pseudorange and carrier phase GPS data are considered. One week of data in the year 2007 is used to assess the potential of single-frequency POD in different environments by comparing the results with dual-frequency POD for LEOs orbiting the Earth in different heights. Data from the two GRACE and the MetOp-A satellites is processed for this purpose. Moreover, the impact of different data sampling rates on single-frequency POD is considered. For this period with low solar activity a 3D orbit accuracy of 1 dm could be reached for one of the GRACE satellites. It could be shown that it is necessary to have a high data sampling of 10 s or more available when the impact of the ionosphere is high due to low altitude of the satellite or high solar activity. Our study helps to define requirements for GNSS (Global Navigation Satellite System) receivers and POD algorithms for future LEO missions for which only moderate orbit accuracy of about one to few decimeter is needed.
Databáze: OpenAIRE