Domination in Commuting Graph and its Complement

Autor: Yasser Golkhandy Pour, Ebrahim Vatandoost
Rok vydání: 2016
Předmět:
Zdroj: Iranian Journal of Science and Technology, Transactions A: Science. 41:383-391
ISSN: 2364-1819
1028-6276
DOI: 10.1007/s40995-016-0028-5
Popis: For each non-commutative ring R, the commuting graph of R is a graph with vertex set $R\setminus Z(R)$ and two vertices $x$ and $y$ are adjacent if and only if $x\neq y$ and $xy=yx$. In this paper, we consider the domination and signed domination numbers on commuting graph $\Gamma(R)$ for non-commutative ring $R$ with $Z(R)=\{0\}$. For a finite ring $R$, it is shown that $\gamma(\Gamma(R)) + \gamma(\overline{\Gamma}(R))=|R|$ if and only if $R$ is non-commutative ring on 4 elements. Also we determine the domination number of $\Gamma(\prod_{i=1}^{t}R_i)$ and commuting graph of non-commutative ring $R$ of order $p^3$, where $p$ is prime. Moreover we present an upper bound for signed domination number of $\Gamma(\prod_{i=1}^{t}R_i)$.
Comment: 9 pages in Iranian Journal of Science and Technology, series A- first online 13 June 2016
Databáze: OpenAIRE