On the expressive power of permanents and perfect matchings of matrices of bounded pathwidth/cliquewidth
Autor: | Uffe Flarup, Laurent Lyaudet |
---|---|
Přispěvatelé: | Department of Mathematics and Computer Science [Odense] (IMADA), University of Southern Denmark (SDU), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique Fondamentale d'Orléans (LIFO), Ecole Nationale Supérieure d'Ingénieurs de Bourges-Université d'Orléans (UO), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) |
Jazyk: | angličtina |
Rok vydání: | 2008 |
Předmět: |
FOS: Computer and information sciences
Perfect matchings Discrete Mathematics (cs.DM) Computation [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] Pathwidth 0102 computer and information sciences 02 engineering and technology Computer Science::Computational Complexity [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] 01 natural sciences Theoretical Computer Science Combinatorics symbols.namesake TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION 0202 electrical engineering electronic engineering information engineering Complexity class Permanent ComputingMilieux_MISCELLANEOUS Mathematics Discrete mathematics Formulas 16. Peace & justice Skew circuits Planar graph Hamiltonian Cliquewidth Treewidth Computational Theory and Mathematics 010201 computation theory & mathematics Bounded function Theory of computation symbols 020201 artificial intelligence & image processing Hamiltonian (quantum mechanics) Valiant's model Computer Science - Discrete Mathematics |
Zdroj: | Theory of Computing Systems Theory of Computing Systems, Springer Verlag, 2010, 46 (4), pp.761-791. ⟨10.1007/s00224-009-9241-3⟩ Flarup, U & Lyaudet, L 2008, ' On the expressive power of permanents and perfect matchings of matrices of bounded pathwidth/cliquewidth ', Paper presented at International Computer Science Symposium in Russia, Moskva, Russian Federation, 07/06/2008-12/06/2008 . |
ISSN: | 1432-4350 1433-0490 |
DOI: | 10.1007/s00224-009-9241-3⟩ |
Popis: | Some 25 years ago Valiant introduced an algebraic model of computation in order to study the complexity of evaluating families of polynomials. The theory was introduced along with the complexity classes VP and VNP which are analogues of the classical classes P and NP. Families of polynomials that are difficult to evaluate (that is, VNP-complete) includes the permanent and hamiltonian polynomials. In a previous paper the authors together with P. Koiran studied the expressive power of permanent and hamiltonian polynomials of matrices of bounded treewidth, as well as the expressive power of perfect matchings of planar graphs. It was established that the permanent and hamiltonian polynomials of matrices of bounded treewidth are equivalent to arithmetic formulas. Also, the sum of weights of perfect matchings of planar graphs was shown to be equivalent to (weakly) skew circuits. In this paper we continue the research in the direction described above, and study the expressive power of permanents, hamiltonians and perfect matchings of matrices that have bounded pathwidth or bounded cliquewidth. In particular, we prove that permanents, hamiltonians and perfect matchings of matrices that have bounded pathwidth express exactly arithmetic formulas. This is an improvement of our previous result for matrices of bounded treewidth. Also, for matrices of bounded weighted cliquewidth we show membership in VP for these polynomials. 21 pages |
Databáze: | OpenAIRE |
Externí odkaz: |