Mechanisms of amylin/leptin synergy in rodent models

Autor: Victoria F. Turek, David G. Parkes, Barry E. Levin, Calvin Vu, Peter S. Griffin, Ambrose A. Dunn-Meynell, James L. Trevaskis, Boman G. Irani, Jonathan D. Roth, Carrie Wittmer, Guibao Gu
Rok vydání: 2009
Předmět:
Zdroj: Endocrinology. 151(1)
ISSN: 1945-7170
Popis: The present studies aimed to identify mechanisms contributing to amylin/leptin synergy in reducing body weight and adiposity. We reasoned that if amylin/leptin harnessed complementary neuronal pathways, then in the leptin-sensitive state, amylin should augment leptin signaling/binding and that in the absence of endogenous amylin, leptin signaling should be diminished. Amylin (50 μg/kg, ip) amplified low-dose leptin-stimulated (15 μg/kg, ip) phosphorylated signal transducer and activator of transcription-3 signaling within the arcuate nucleus (ARC) in lean rats. Amylin (50 μg/kg · d) or leptin (125 μg/kg · d) infusion to lean rats decreased 28-d food intake (14 and 10%, respectively), body weight (amylin by 4.3%, leptin by 4.9%), and epididymal fat (amylin by 19%, leptin by 37%). Amylin/leptin co-infusion additively decreased food intake (by 26%) and reduced body weight (by 15%) and epididymal fat (by 78%; all P < 0.05 vs. all groups) in a greater than mathematically additive manner, consistent with synergy. Amylin increased leptin binding within the ventromedial hypothalamus (VMN) by 35% and dorsomedial hypothalamus by 47% (both P < 0.05 vs. vehicle). Amylin/leptin similarly increased leptin binding in the VMN by 40% and ARC by 70% (P < 0.05 vs. vehicle). In amylin-deficient mice, hypothalamic leptin receptor mRNA expression was reduced by 50%, leptin-stimulated phosphorylated signal transducer and activator of transcription-3 within ARC and VMN was reduced by 40%, and responsiveness to leptin’s (1 mg/kg · d for 28 d) weight-reducing effects was attenuated (all P < 0.05 vs. wild-type controls). We suggest that amylin/leptin’s marked weight- and fat-reducing effects are due to activation of intrinsic synergistic neuronal signaling pathways and further point to the integrated neurohormonal therapeutic potential of amylin/leptin agonism in obesity.
Databáze: OpenAIRE