Busemann's intersection inequality in hyperbolic and spherical spaces

Autor: Jaegil Kim, Vladyslav Yaskin, Susanna Dann
Rok vydání: 2017
Předmět:
DOI: 10.48550/arxiv.1706.06776
Popis: Busemann's intersection inequality asserts that the only maximizers of the integral $\int_{S^{n-1}} |K\cap\xi^\perp|^n d\xi$ among all convex bodies of a fixed volume in $\mathbb R^n$ are centered ellipsoids. We study this question in the hyperbolic and spherical spaces, as well as general measure spaces.
Comment: 35 pages, 6 figures
Databáze: OpenAIRE