Décroissance des corrélations pour un ensemble capté normalement hyperbolique

Autor: Maciej Zworski, Stéphane Nonnenmacher
Přispěvatelé: Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics [Berkeley], University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), DMS-1201417, University of California [Berkeley], University of California-University of California
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Inventiones Mathematicae
Inventiones Mathematicae, 2015, Inventiones Mathematicae, 200, pp.345-438. ⟨10.1007/s00222-014-0527-y⟩
Inventiones Mathematicae, Springer Verlag, 2015, Inventiones Mathematicae, 200, pp.345-438. ⟨10.1007/s00222-014-0527-y⟩
ISSN: 0020-9910
1432-1297
DOI: 10.1007/s00222-014-0527-y⟩
Popis: International audience; We prove that for evolution problems with normally hyperbolic trapping in phase space, correlations decay exponentially in time. Normal hyperbolic trapping means that the trapped set is smooth and symplectic and that the flow is hyperbolic in directions transversal to it. Flows with this structure include contact Anosov flows, classical flows in molecular dynamics, and null geodesic flows for black holes metrics. The decay of correlations is a consequence of the existence of resonance free strips for Green's functions (cut-off resolvents) and polynomial bounds on the growth sof those functions in the semiclassical parameter.
Databáze: OpenAIRE