Unstable neurons underlie a stable learned behavior

Autor: Carlos Lois, William A. Liberti, Jeffrey E. Markowitz, Darrell N. Kotton, Grigori Guitchounts, Daniel P. Leman, Derek C. Liberti, L. Nathan Perkins, Tarciso A. F. Velho, Timothy J. Gardner
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Repositório Institucional da UFRN
Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
Nature neuroscience
Popis: Motor skills can be maintained for decades, but the biological basis of this memory persistence remains largely unknown. The zebra finch, for example, sings a highly stereotyped song that is stable for years, but it is not known whether the precise neural patterns underlying song are stable or shift from day to day. Here, we demonstrate that the population of projection neurons coding for song in the pre-motor nucleus HVC change from day to day. The most dramatic shifts occur over intervals of sleep. In contrast to the transient participation of excitatory neurons, ensemble measurements dominated by inhibition persist unchanged even after damage to downstream motor nerves. These observations offer a principle of motor stability: spatio-temporal patterns of inhibition can maintain a stable scaffold for motor dynamics while the population of principle neurons that directly drive behavior shift from one day to the next.
Databáze: OpenAIRE