An H2-infused, nitric oxide-producing functional beverage as a neuroprotective agent for TBIs and concussions
Autor: | Jason Kharman, Tyler W. LeBaron, Michael L McCullough |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Adult
Traumatic brain injury Inflammation Neurosciences. Biological psychiatry. Neuropsychiatry Pharmacology medicine.disease_cause Neuroprotection Nitric oxide Beverages chemistry.chemical_compound nitric oxide Brain Injuries Traumatic Humans Medicine molecular hydrogen reactive oxygen specie biology business.industry General Neuroscience traumatic brain injury General Medicine Hypoxia (medical) medicine.disease Nitric oxide synthase Neuroprotective Agents Ion homeostasis chemistry inflammation biology.protein medicine.symptom business Oxidative stress Hydrogen RC321-571 |
Zdroj: | Journal of Integrative Neuroscience, Vol 20, Iss 3, Pp 667-676 (2021) |
Popis: | Traumatic brain injuries (TBIs) are a leading cause of death and disability. Sports-related TBIs are estimated to be more than several million per year. The pathophysiology of TBIs involves high levels of inflammation, oxidative stress, dysregulation of ion homeostasis, mitochondrial dysfunction, and apoptosis. There is also a reduction in cerebral blood flow, leading to hypoxia and reduced removal of metabolic waste, which further exacerbates the injury. There is currently no recognized effective medical treatment or intervention for TBIs, which may in part be due to the difficulty of drug delivery through the blood-brain barrier. Molecular hydrogen has recently emerged as a neuroprotective medical gas against cerebral infarction and neurodegenerative diseases including TBIs. Its small molecular size and nonpolar nature allow it to easily diffuse through the blood-brain barrier, cell membranes and subcellular compartments. Hydrogen has been shown to exert selective anti-inflammatory, antioxidant, and anti-apoptotic effects by regulating various transcription factors and protein phosphorylation cascades. Nitric oxide is another well-recognized medical gas that plays divergent roles in protecting from and in the recovery of TBIs, as well as in contributing to their pathophysiology and injury. Excessive activation of inducible nitric oxide synthase leads to excess inflammation and oxidative/nitrosative damage as well as a paradoxical nitric oxide depletion in the locations it is needed. Hydrogen regulates nitric oxide production and metabolism, which enhances its benefits while reducing its harms. A novel H2-infused, nitric oxide producing beverage, Hydro Shot, may have important neuroprotective benefits for TBIs. We report preliminary indications that Hydro Shot may be a meaningful adjuvant treatment for TBIs. |
Databáze: | OpenAIRE |
Externí odkaz: |