Network transitivity and matrix models
Autor: | A. Krzywicki, J. Jurkiewicz, Zdzislaw Burda |
---|---|
Přispěvatelé: | Marian Smoluchowski Institute of Physics (MSIP), Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11) |
Rok vydání: | 2004 |
Předmět: |
State-transition matrix
Discrete mathematics Transitive relation Models Statistical Theoretical computer science Physics Condensed Matter (cond-mat) FOS: Physical sciences Condensed Matter Models Theoretical 01 natural sciences 010305 fluids & plasmas Matrix (mathematics) Probability theory Distance matrix [PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] 0103 physical sciences Cluster Analysis Computer Simulation Neural Networks Computer Adjacency matrix 010306 general physics Cluster analysis Variable (mathematics) Mathematics |
Zdroj: | Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2004, 69, pp.026106 |
ISSN: | 1550-2376 1539-3755 |
DOI: | 10.1103/physreve.69.026106 |
Popis: | This paper is a step towards a systematic theory of the transitivity (clustering) phenomenon in random networks. A static framework is used, with adjacency matrix playing the role of the dynamical variable. Hence, our model is a matrix model, where matrices are random, but their elements take values 0 and 1 only. Confusion present in some papers where earlier attempts to incorporate transitivity in a similar framework have been made is hopefully dissipated. Inspired by more conventional matrix models, new analytic techniques to develop a static model with non-trivial clustering are introduced. Computer simulations complete the analytic discussion. Comment: 11 pages, 7 eps figures, 2-column revtex format, print bug corrected |
Databáze: | OpenAIRE |
Externí odkaz: |