Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK)

Autor: John D. Knafels, David Price, Matthew Gorgoglione, Aaron C. Smith, Kevin D. Parris, Jemy A. Gutierrez, Magee Thomas Victor, Erik Alphie Lachapelle, Yan Weng, Edward L. Conn, Jeffrey A. Pfefferkorn, Jane M. Withka, Kim Huard, Matthew S. Dowling, Timothy A. Subashi, Trenton T. Ross, Benjamin A. Thuma, Kris A. Borzilleri, Paul A. Amor, Jeffrey S. Culp, Meihua Tu, Sylvie Perez, Jayvardhan Pandit, Andre Shavnya, Boris A. Chrunyk, Gang Xing, John D. Weaver, Yang Cong, Kay Ahn, David A. Beebe, Brian Raymer, Gregory J. Tesz, Steven B. Coffey
Rok vydání: 2017
Předmět:
Zdroj: Journal of Medicinal Chemistry. 60:7835-7849
ISSN: 1520-4804
0022-2623
DOI: 10.1021/acs.jmedchem.7b00947
Popis: Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of 12, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine 12.
Databáze: OpenAIRE