Some remarks on the Lipschitz regularity of Radon transforms
Autor: | Jonathan Hickman, Sean Li, Jonas Azzam |
---|---|
Rok vydání: | 2018 |
Předmět: |
Radon transform
Applied Mathematics General Mathematics Mathematical analysis chemistry.chemical_element Radon Function (mathematics) Lipschitz continuity Image (mathematics) chemistry Mathematics - Classical Analysis and ODEs Bounded function Euclidean geometry Classical Analysis and ODEs (math.CA) FOS: Mathematics Mathematics::Metric Geometry Constant (mathematics) 44A12 28A75 42B37 Mathematics |
Zdroj: | Azzam, J, Li, S & Hickman, J 2018, ' Some remarks on the Lipschitz regularity of Radon transforms ', Proceedings of the american mathematical society, vol. 146, no. 10, pp. 4331-4337 . https://doi.org/10.1090/proc/14083 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/proc/14083 |
Popis: | A set in the Euclidean plane is constructed whose image under the classical Radon transform is Lipschitz in every direction. It is also shown that, under mild hypotheses, for any such set the function which maps a direction to the corresponding Lipschitz constant cannot be bounded. Comment: 6 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |