Comparative study of algorithms for synthetic CT generation from MRI : Consequences for MRI ‐guided radiation planning in the pelvic region
Autor: | Nikolaos Koutsouvelis, Jason Dowling, Xiao Han, Habib Zaidi, Peter B. Greer, Hossein Arabi, Ninon Burgos |
---|---|
Přispěvatelé: | Geneva University Hospital (HUG), CSIRO Information and Commuciation Technologies (CSIRO ICT Centre), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Elekta Inc. [Maryland Heights], Calvary Mater Newcastle Hospital, University of Newcastle [Australia] (UoN), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of Newcastle [Callaghan, Australia] (UoN), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2018 |
Předmět: |
IMAGE
Image Processing Computer-Assisted/methods Weighted voting ECHO-TIME THERAPY ddc:616.0757 Pelvis/diagnostic imaging Radiation planning Pelvis 030218 nuclear medicine & medical imaging CT synthesis Machine Learning 03 medical and health sciences Segmentation 0302 clinical medicine Atlas (anatomy) Machine learning Image Processing Computer-Assisted [INFO.INFO-IM]Computer Science [cs]/Medical Imaging atlas-based medicine COMPUTED-TOMOGRAPHY GENERATION ONLY RADIOTHERAPY PROSTATE Humans HEAD Radiation treatment planning ComputingMilieux_MISCELLANEOUS Mathematics Atlas-based PSEUDO-CT medicine.diagnostic_test segmentation Magnetic resonance imaging General Medicine Neural Networks (Computer) Magnetic Resonance Imaging ATTENUATION CORRECTION 3. Good health medicine.anatomical_structure 030220 oncology & carcinogenesis MRI-guided radiotherapy planning Neural Networks Computer Tomography X-Ray Computed Algorithm Correction for attenuation Algorithms |
Zdroj: | Arabi, H, Dowling, J A, Burgos, N, Han, X, Greer, P B, Koutsouvelis, N & Zaidi, H 2018, ' Comparative study of algorithms for synthetic CT generation from MRI : Consequences for MRI-guided radiation planning in the pelvic region ', Medical Physics, vol. 45, no. 11, pp. 5218-5233 . https://doi.org/10.1002/mp.13187 Medical Physics, Vol. 45, No 11 (2018) pp. 5218-5224 Medical Physics Medical Physics, American Association of Physicists in Medicine, 2018, ⟨10.1002/mp.13187⟩ Medical Physics, 2018, ⟨10.1002/mp.13187⟩ Medical Physics, 45(11), 5218-5233. Wiley |
ISSN: | 2473-4209 0094-2405 |
DOI: | 10.1002/mp.13187 |
Popis: | Purpose Methods Magnetic resonance imaging (MRI)-guided radiation therapy (RT) treatment planning is limited by the fact that the electron density distribution required for dose calculation is not readily provided by MR imaging. We compare a selection of novel synthetic CT generation algorithms recently reported in the literature, including segmentation-based, atlas-based and machine learning techniques, using the same cohort of patients and quantitative evaluation metrics. Six MRI-guided synthetic CT generation algorithms were evaluated: one segmentation technique into a single tissue class (water-only), four atlas-based techniques, namely, median value of atlas images (ALMedian), atlas-based local weighted voting (ALWV), bone enhanced atlas-based local weighted voting (ALWV-Bone), iterative atlas-based local weighted voting (ALWV-Iter), and a machine learning technique using deep convolution neural network (DCNN). Results Conclusions Organ auto-contouring from MR images was evaluated for bladder, rectum, bones, and body boundary. Overall, DCNN exhibited higher segmentation accuracy resulting in Dice indices (DSC) of 0.93 +/- 0.17, 0.90 +/- 0.04, and 0.93 +/- 0.02 for bladder, rectum, and bones, respectively. On the other hand, ALMedian showed the lowest accuracy with DSC of 0.82 +/- 0.20, 0.81 +/- 0.08, and 0.88 +/- 0.04, respectively. DCNN reached the best performance in terms of accurate derivation of synthetic CT values within each organ, with a mean absolute error within the body contour of 32.7 +/- 7.9 HU, followed by the advanced atlas-based methods (ALWV: 40.5 +/- 8.2 HU, ALWV-Iter: 42.4 +/- 8.1 HU, ALWV-Bone: 44.0 +/- 8.9 HU). ALMedian led to the highest error (52.1 +/- 11.1 HU). Considering the dosimetric evaluation results, ALWV-Iter, ALWV, DCNN and ALWV-Bone led to similar mean dose estimation within each organ at risk and target volume with less than 1% dose discrepancy. However, the two-dimensional gamma analysis demonstrated higher pass rates for ALWV-Bone, DCNN, ALMedian and ALWV-Iter at 1%/1 mm criterion with 94.99 +/- 5.15%, 94.59 +/- 5.65%, 93.68 +/- 5.53% and 93.10 +/- 5.99% success, respectively, while ALWV and water-only resulted in 86.91 +/- 13.50% and 80.77 +/- 12.10%, respectively. Overall, machine learning and advanced atlas-based methods exhibited promising performance by achieving reliable organ segmentation and synthetic CT generation. DCNN appears to have slightly better performance by achieving accurate automated organ segmentation and relatively small dosimetric errors (followed closely by advanced atlas-based methods, which in some cases achieved similar performance). However, the DCNN approach showed higher vulnerability to anatomical variation, where a greater number of outliers was observed with this method. Considering the dosimetric results obtained from the evaluated methods, the challenge of electron density estimation from MR images can be resolved with a clinically tolerable error. |
Databáze: | OpenAIRE |
Externí odkaz: |