Deep-water circulation changes lead North Atlantic climate during deglaciation

Autor: Nicholas L. Balascio, Thomas E. Woodruff, Kees C. Welten, Trond Dokken, Francesco Muschitiello, William J. D'Andrea, Luke C Skinner, Nicole deRoberts, M.H. Simon, Marc W. Caffee, Timothy J Heaton, Andreas Schmittner
Přispěvatelé: Caffee, Marc W [0000-0002-6846-8967], Apollo - University of Cambridge Repository
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Nature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
Nature Communications
ISSN: 2041-1723
Popis: Constraining the response time of the climate system to changes in North Atlantic Deep Water (NADW) formation is fundamental to improving climate and Atlantic Meridional Overturning Circulation predictability. Here we report a new synchronization of terrestrial, marine, and ice-core records, which allows the first quantitative determination of the response time of North Atlantic climate to changes in high-latitude NADW formation rate during the last deglaciation. Using a continuous record of deep water ventilation from the Nordic Seas, we identify a ∼400-year lead of changes in high-latitude NADW formation ahead of abrupt climate changes recorded in Greenland ice cores at the onset and end of the Younger Dryas stadial, which likely occurred in response to gradual changes in temperature- and wind-driven freshwater transport. We suggest that variations in Nordic Seas deep-water circulation are precursors to abrupt climate changes and that future model studies should address this phasing.
The response time of North Atlantic climate to changes in high-latitude deep-water formation during the last deglaciation is still unclear. Here the authors show that gradual changes in Nordic Seas deep-water circulation systematically lead ahead of abrupt regional climate shifts by ~400 years.
Databáze: OpenAIRE