Dynamical analysis of lump solution for the (2+1)-dimensional Ito equation
Autor: | Zhengde Dai, Hou-Ping Dai, Wei Tan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
Renewable Energy Sustainability and the Environment Hirota bi-linear method lcsh:Mechanical engineering and machinery One-dimensional space Perturbation (astronomy) 01 natural sciences Classical mechanics 0103 physical sciences lump solution Wave field lcsh:TJ1-1570 Homoclinic orbit (2+1)-dimensional Ito equation 010306 general physics 010301 acoustics Nonlinear Sciences::Pattern Formation and Solitons dynamics analysis |
Zdroj: | Thermal Science, Vol 21, Iss 4, Pp 1673-1679 (2017) |
ISSN: | 2334-7163 0354-9836 |
Popis: | Exact kinky breather-wave solution, periodic breather-wave solution, and some lump solutions to the (2+1)-dimensional Ito equation are obtained by using an extended homoclinic test technique and Hirota bi-linear method with a perturbation parameter u0. Furthermore, a new non-linear phenomenon in the lump solution, is investigated and discussed. These interesting non-linear phenomena might provide us with useful information on the dynamics of higher-dimensional non-linear wave field. |
Databáze: | OpenAIRE |
Externí odkaz: |