Local Conformal Structure of Liouville Quantum Gravity

Autor: Antti Kupiainen, Rémi Rhodes, Vincent Vargas
Přispěvatelé: Department of Mathematics and Statistics [Helsinki], Falculty of Science [Helsinki], University of Helsinki-University of Helsinki, Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM), Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE40-0013,Liouville,Géométrie quantique de Liouville et flots turbulents(2015), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS), ANR: Liouville,ANR-15-CE40-0013, Université Paris-Est (UPE), Department of Mathematics and Statistics, Mathematical physics, Mind and Matter, Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, École normale supérieure - Paris (ENS-PSL)
Rok vydání: 2018
Předmět:
Structure constants
FREE-FIELD
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
Conformal map
String theory
integrability
field theory
Liouville
60D05
81T40
81T20

114 Physical sciences
01 natural sciences
operator product expansion
Theoretical physics
Conformal symmetry
0103 physical sciences
FOS: Mathematics
111 Mathematics
Operator product expansion
structure
correlation function
0101 mathematics
Quantum field theory
string model
Ward identity: conformal
2D
Mathematical Physics
Mathematics
cohomology: quantum
field theory: conformal
Conformal field theory
Probability (math.PR)
010102 general mathematics
differential equations
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
16. Peace & justice
INVARIANCE
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
UNIQUENESS
quantum gravity
gravitation
symmetry: conformal
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
Quantum gravity
010307 mathematical physics
Mathematics - Probability
Zdroj: Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2018
Commun.Math.Phys.
Commun.Math.Phys., 2019, 371 (3), pp.1005-1069. ⟨10.1007/s00220-018-3260-3⟩
ISSN: 0010-3616
1432-0916
DOI: 10.1007/s00220-018-3260-3
Popis: Liouville Conformal Field Theory (LCFT) is an essential building block of Polyakov's formulation of non critical string theory. Moreover, scaling limits of statistical mechanics models on planar maps are believed by physicists to be described by LCFT. A rigorous probabilistic formulation of LCFT based on a path integral formulation was recently given by the present authors and F. David in \cite{DKRV}. In the present work, we prove the validity of the conformal Ward identities and the Belavin-Polyakov-Zamolodchikov (BPZ) differential equations (of order $2$) for the correlation functions of LCFT. This initiates the program started in the seminal work of Belavin-Polyakov-Zamolodchikov \cite{BPZ} in a probabilistic setup for a non-trivial Conformal Field Theory. We also prove several celebrated results on LCFT, in particular an explicit formula for the 4 point correlation functions (with insertion of a second order degenerate field) leading to a rigorous proof of a non trivial functional relation on the 3 point structure constants derived earlier in the physics literature by Teschner \cite{Tesc}. The proofs are based on exact identities which rely on the underlying Gaussian structure of LCFT combined with estimates from the theory of critical Gaussian Multiplicative Chaos and a careful analysis of singular integrals (Beurling transforms and generalizations). As a by-product, we give bounds on the correlation functions when two points collide making rigorous certain predictions from physics on the so-called "operator product expansion" of LCFT.
Major revision
Databáze: OpenAIRE