Einstein relation and linear response in one-dimensional Mott variable-range hopping

Autor: Michele Salvi, Alessandra Faggionato, Nina Gantert
Přispěvatelé: Dipartimento di Matematica Guido Castelnuovo, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Institut für Mathematische Statistik, Universitaet Muenster, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma 'La Sapienza' [Rome], Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Weierstraß-Institut für Angewandte Analysis und Stochastik = Weierstrass Institute for Applied Analysis and Stochastics [Berlin] (WIAS), Forschungsverbund Berlin e.V. (FVB) (FVB), Lehrstuhl fur Warscheinlichkeitstheorie, Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Statistics and Probability
Steady states
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
60K37
60J25
60G55
82D30

FOS: Physical sciences
Mott variable-range hopping
random walk in random environment
random conductance model
environment seen from the particle
steady states
linear response
Einstein relation
01 natural sciences
Variable-range hopping
Environment seen from the particle
010104 statistics & probability
60J25
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Random conductance model
FOS: Mathematics
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
0101 mathematics
Linear response
Condensed Matter - Statistical Mechanics
Mathematical Physics
ComputingMilieux_MISCELLANEOUS
Mathematics
Random walk in random environment
Statistical Mechanics (cond-mat.stat-mech)
82D30
010102 general mathematics
Probability (math.PR)
Mathematical Physics (math-ph)
ddc
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
60K37
60G55
Statistics
Probability and Uncertainty

Humanities
Mathematics - Probability
Zdroj: Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2019, 55 (3), pp.1477-1508. ⟨10.1214/18-AIHP925⟩
Ann. Inst. H. Poincaré Probab. Statist. 55, no. 3 (2019), 1477-1508
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institute Henri Poincaré, 2019, 55 (3), pp.1477-1508. ⟨10.1214/18-AIHP925⟩
ISSN: 0246-0203
1778-7017
DOI: 10.1214/18-AIHP925⟩
Popis: We consider one-dimensional Mott variable-range hopping with a bias, and prove the linear response as well as the Einstein relation, under an assumption on the exponential moments of the distances between neighboring points. In a previous paper \cite{FGS} we gave conditions on ballisticity, and proved that in the ballistic case the environment viewed from the particle approaches, for almost any initial environment, a given steady state which is absolutely continuous with respect to the original law of the environment. Here, we show that this bias--dependent steady state has a derivative at zero in terms of the bias (linear response), and use this result to get the Einstein relation. Our approach is new: instead of using e.g. perturbation theory or regeneration times, we show that the Radon-Nikodym derivative of the bias--dependent steady state with respect to the equilibrium state in the unbiased case satisfies an $L^p$-bound, $p>2$, uniformly for small bias. This $L^p$-bound yields, by a general argument not involving our specific model, the statement about the linear response.
35 pages, 1 figure
Databáze: OpenAIRE