Divisibility Networks of the Rational Numbers in the Unit Interval
Autor: | Pedro A. Solares-Hernández, J. Alberto Conejero, M. A. García-March |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Abstract algebra
Rational number Infinite set Physics and Astronomy (miscellaneous) General Mathematics graph theory Network science Complex networks Natural number 010103 numerical & computational mathematics 01 natural sciences number theory Number theory network science Computer Science (miscellaneous) 0101 mathematics Mathematics Discrete mathematics graphs lcsh:Mathematics Divisibility rule complex networks Complex network lcsh:QA1-939 Graph theory 010101 applied mathematics Chemistry (miscellaneous) 04.- Garantizar una educación de calidad inclusiva y equitativa y promover las oportunidades de aprendizaje permanente para todos MATEMATICA APLICADA abstract algebra Graphs Cantor's diagonal argument Unit interval |
Zdroj: | Symmetry Volume 12 Issue 11 RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia instname Symmetry, Vol 12, Iss 1879, p 1879 (2020) |
ISSN: | 2073-8994 |
DOI: | 10.3390/sym12111879 |
Popis: | [EN] Divisibility networks of natural numbers present a scale-free distribution as many other process in real life due to human interventions. This was quite unexpected since it is hard to find patterns concerning anything related with prime numbers. However, it is by now unclear if this behavior can also be found in other networks of mathematical nature. Even more, it was yet unknown if such patterns are present in other divisibility networks. We study networks of rational numbers in the unit interval where the edges are defined via the divisibility relation. Since we are dealing with infinite sets, we need to define an increasing covering of subnetworks. This requires an order of the numbers different from the canonical one. Therefore, we propose the construction of four different orders of the rational numbers in the unit interval inspired in Cantor's diagonal argument. We motivate why these orders are chosen and we compare the topologies of the corresponding divisibility networks showing that all of them have a free-scale distribution. We also discuss which of the four networks should be more suitable for these analyses JAC was funded by MEC grant number MTM2016-75963-P. PASH acknowledges the support of MESCyT-RD, Casa Brugal, and Fundacion Proyecto Escuela Hoy Inc. for his PhD grants. MAGM acknowledges funding from the Spanish Ministry of Education and Vocational Training (MEFP) through the Beatriz Galindo program 2018 (BEAGAL18/00203) and Spanish Ministry MINECO FIDEUA PID2019-106901GB-I00/10.13039/501100011033. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |