An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow-force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx

Autor: Philippe Malagoli, Erwan Le Deunff
Přispěvatelé: Ecophysiologie Végétale, Agronomie et Nutritions (EVA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Recherche Agronomique (INRA), Laboratoire de Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier (PIAF), Institut National de la Recherche Agronomique (INRA)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP), Institut National de la Recherche Agronomique (INRA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
0106 biological sciences
root apical meristem
functional-structural plant model
biological systems
Plant Science
01 natural sciences
chemistry.chemical_compound
Nitrate
diurnal-variation
Flow-Force interpretation
root longevity
2. Zero hunger
0303 health sciences
electrokinetic interpretation
Vegetal Biology
Nitrate uptake
Component (thermodynamics)
Nitrate influx
Plants
nitrate influx regulation
Nitrate transport
festuca-pratensis
Environmental chemistry
Thermodynamics
water-uptake
root development
oilseed rape
Nitrate uptake isotherms
arabidopsis-thaliana
Biology
Models
Biological

03 medical and health sciences
Botany
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
brassica-napus l
N uptake modelling
nitrogen uptake efficiency
sustainable agriculture
Brassica napus
to-cell communication
winter
Ion transporter
030304 developmental biology
Nitrates
Biological Transport
Original Articles
chemistry
Flow force
Biologie végétale
010606 plant biology & botany
Field conditions
Zdroj: Annals of Botany
Annals of Botany, Oxford University Press (OUP), 2014, 113 (6), pp.991-1005. ⟨10.1093/aob/mcu021⟩
Annals of Botany 6 (113), 991-1005. (2014)
ISSN: 0304-4238
0305-7364
1095-8290
DOI: 10.1093/aob/mcu021⟩
Popis: Ann. Bot.ISI Document Delivery No.: AG9XJTimes Cited: 1Cited Reference Count: 98Cited References: Le Bot J, 1998, SCI HORTIC-AMSTERDAM, V74, P47, DOI 10.1016/S0304-4238(98)00082-X Ahuja LR, 2008, QUANTIFYING UNDERSTA, P1 Baker D. A., 1988, Solute transport in plant cells and tissues., P1 Barber SA, 1995, SOIL NUTR BIOAVAILAB, P110 Barraclough PB, 1989, PLANT SOIL, V11, P959 Beuve N, 2004, PLANT CELL ENVIRON, V27, P1035, DOI 10.1111/j.1365-3040.2004.01208.x Beyschlag W, 2012, PROGR BOT, P57 BHAT KKS, 1979, PLANT SOIL, V53, P137, DOI 10.1007/BF02181888 Biondini M, 2008, J THEOR BIOL, V251, P35, DOI 10.1016/j.jtbi.2007.11.018 Chen HYH, 2013, CRIT REV PLANT SCI, V32, P151, DOI 10.1080/07352689.2012.734742 Chopin F, 2007, PLANT PHYSIOL BIOCH, V45, P630, DOI 10.1016/j.plaphy.2007.04.007 Colnenne C, 1998, ANN BOT-LONDON, V81, P311, DOI 10.1006/anbo.1997.0557 Coskun D, 2013, PLANT PHYSIOL, V162, P496, DOI 10.1104/pp.113.215913 Crawford NM, 1998, TRENDS PLANT SCI, V3, P389, DOI 10.1016/S1360-1385(98)01311-9 Dainty J., 1969, PHYSL PLANT GROWTH D, P420 DAINTY JACK, 1963, ADVAN BOT RES, V1, P279, DOI 10.1016/S0065-2296(08)60183-4 De Angeli A, 2009, J BIOL CHEM, V284, P26526, DOI 10.1074/jbc.M109.005132 De Angeli A, 2006, NATURE, V442, P939, DOI 10.1038/nature05013 DELHON P, 1995, J EXP BOT, V46, P1595, DOI 10.1093/jxb/46.10.1595 Devienne-Barret F, 2000, ANN BOT-LONDON, V86, P995, DOI 10.1006/anbo.2000.1264 DUCKETT CM, 1994, DEVELOPMENT, V120, P3247 Eissenstat DM, 2005, ECOL STU AN, V181, P185 Epstein E., 1972, MINERAL NUTR PLANTS, P69 EPSTEIN E, 1953, NATURE, V171, P83, DOI 10.1038/171083a0 EPSTEIN E, 1952, PLANT PHYSIOL, V27, P457, DOI 10.1104/pp.27.3.457 EPSTEIN E, 1963, P NATL ACAD SCI USA, V49, P684, DOI 10.1073/pnas.49.5.684 EPSTEIN E, 1966, NATURE, V212, P1324, DOI 10.1038/2121324a0 Eshel A, 1973, ION TRANSPORT PLANTS, P531 Faure-Rabasse S, 2002, J EXP BOT, V53, P1711, DOI 10.1093/jxb/erf023 Feng HM, 2011, J EXP BOT, V62, P2319, DOI 10.1093/jxb/erq403 Filleur S, 2001, FEBS LETT, V489, P220, DOI 10.1016/S0014-5793(01)02096-8 FISCUS EL, 1975, P NATL ACAD SCI USA, V72, P3114, DOI 10.1073/pnas.72.8.3114 Forde BG, 1999, ADV BOT RES, V30, P1 Gao SY, 1998, AGRON J, V90, P505 Garnett T, 2009, PLANT CELL ENVIRON, V32, P1272, DOI 10.1111/j.1365-3040.2009.02011.x Geelen D, 2000, PLANT J, V21, P259, DOI 10.1046/j.1365-313x.2000.00680.x Girin T, 2007, PLANT CELL ENVIRON, V30, P1366, DOI 10.1111/j.1365-3040.2007.01712.x GLASS ADM, 1992, PLANT PHYSIOL, V99, P456, DOI 10.1104/pp.99.2.456 Good AG, 2004, TRENDS PLANT SCI, V9, P597, DOI 10.1016/j.tplants.2004.10.008 Gosse G, 1999, AGRONOMIE, V19, P119, DOI 10.1051/agro:19990204 Gregory PJ, 2011, J EXP BOT, V62, P5233, DOI 10.1093/jxb/err232 Guo FQ, 2002, J EXP BOT, V53, P835, DOI 10.1093/jexbot/53.370.835 Guo FQ, 2001, PLANT CELL, V13, P1761, DOI 10.1105/tpc.13.8.1761 HANSEN GK, 1980, PHYSIOL PLANTARUM, V48, P421, DOI 10.1111/j.1399-3054.1980.tb03279.x Ho CH, 2009, CELL, V138, P1184, DOI 10.1016/j.cell.2009.07.004 Hu HC, 2009, PLANT J, V57, P264, DOI 10.1111/j.1365-313X.2008.03685.x Jeuffroy MH, 1999, EUR J AGRON, V10, P129, DOI 10.1016/S1161-0301(98)00059-8 Kohler B, 2002, PLANT J, V30, P133, DOI 10.1046/j.1365-313X.2002.01269.x Kramer PJ, 1983, WATER RELATIONS PLAN, P215 KRONZUCKER HJ, 1995, PLANTA, V196, P674, DOI 10.1007/BF01106760 KRONZUCKER HJ, 1995, PLANT PHYSIOL, V109, P319 Krouk G, 2006, PLANT PHYSIOL, V142, P1075, DOI 10.1104/pp.106.087510 LAINE P, 1995, PLANTA, V196, P77 LAINE P, 1994, NEW PHYTOL, V127, P675, DOI 10.1111/j.1469-8137.1994.tb02970.x Laurent F, 1992, ASPECTS APPL BIOL, V30, P45 Le Ny F, 2013, PLANT SIGNALING BEHA, V8 Leblanc Antonin, 2013, Plant Signal Behav, V8, pe22904, DOI 10.4161/psb.22904 Leblanc E, 2008, PLANT PHYSIOL, V146, P1928 Lemaire L, 2013, J EXPT BOT, V64, P2725 Leran S, 2013, MOL PLANT, V6, P1984, DOI 10.1093/mp/sst068 Li JY, 2010, PLANT CELL, V22, P1633, DOI 10.1105/tpc.110.075242 Li WB, 2007, PLANT PHYSIOL, V143, P425, DOI 10.1104/pp.106.091223 Lin SH, 2008, PLANT CELL, V20, P2514, DOI 10.1105/tpc.108.060244 Liu KH, 2003, EMBO J, V22, P1005, DOI 10.1093/emboj/cdg118 Macduff JH, 2003, J EXP BOT, V54, P431, DOI 10.1093/jxb/erg058 Macduff JH, 1997, J EXP BOT, V48, P1691, DOI 10.1093/jexbot/48.314.1691 Malagoli P, 2014, ANN BOT-LONDON, V113, P1007, DOI 10.1093/aob/mcu022 Malagoli P, 2004, PLANT PHYSIOL, V134, P388, DOI 10.1104/pp.103.029538 Maurel C, 2007, FEBS LETT, V581, P2227, DOI 10.1016/j.febslet.2007.03.021 Monachello D, 2009, NEW PHYTOL, V183, P88, DOI 10.1111/j.1469-8137.2009.02837.x Nazoa P, 2003, PLANT MOL BIOL, V52, P689, DOI 10.1023/A:1024899808018 Nikolic M, 2012, BMC PLANT BIOL, V12, DOI 10.1186/1471-2229-12-66 Okamoto M, 2003, PLANT CELL PHYSIOL, V44, P304, DOI 10.1093/pcp/pcg036 Orsel Mathilde, 2007, Plant Signal Behav, V2, P260, DOI 10.4161/psb.2.4.3870 Ourry A, 2008, QUANTIFYING UNDERSTA, P47 Pearson CJ, 1977, PLANTA, V137, P102 Remans T, 2006, PLANT PHYSIOL, V140, P909, DOI 10.1104/pp.105.075721 Remans T, 2006, P NATL ACAD SCI USA, V103, P19206, DOI 10.1073/pnas.0605275103 Roose T, 2004, J THEOR BIOL, V228, P173, DOI 10.1016/j.jtbi.2003.12.013 Segonzac C, 2011, PLANT CELL, V19, P3760 SIDDIQI MY, 1989, PLANT PHYSIOL, V90, P806, DOI 10.1104/pp.90.3.806 SIDDIQI MY, 1990, PLANT PHYSIOL, V93, P1426, DOI 10.1104/pp.93.4.1426 Sorgona A, 2011, PLANT CELL ENVIRON, V34, P1127, DOI 10.1111/j.1365-3040.2011.02311.x STEINGROVER E, 1986, PHYSIOL PLANTARUM, V66, P550, DOI 10.1111/j.1399-3054.1986.tb05965.x Steudle E, 2000, PLANT SOIL, V226, P45, DOI 10.1023/A:1026439226716 Steudle E, 2000, J EXP BOT, V51, P1531, DOI 10.1093/jexbot/51.350.1531 Thellieri M., 2009, V70, P53, DOI 10.1007/978-3-540-68421-3_3 Thellier M., 1973, ION TRANSPORT PLANTS, P47 THELLIER M, 1971, J THEOR BIOL, V31, P389, DOI 10.1016/0022-5193(71)90017-8 THELLIER M, 1970, ANN BOT-LONDON, V34, P983 Tilmann D., 1999, P NATL ACAD SCI USA, V99, P5595 Tinker PB, 2000, SOLUTES MOVEMENT RHI, P308 TORII K, 1966, PLANT PHYSIOL, V41, P863, DOI 10.1104/pp.41.5.863 Touraine B, 2001, PLANT NITROGEN, P1 von der Fecht-Bartenbach J, 2010, PLANT CELL PHYSIOL, V51, P960, DOI 10.1093/pcp/pcq062 Wang RC, 2009, PLANT PHYSIOL, V151, P472, DOI 10.1104/pp.109.140434 Zhu T, 1998, PROTOPLASMA, V204, P84, DOI 10.1007/BF01282296 Zhu T, 1998, PROTOPLASMA, V203, P35, DOI 10.1007/BF01280585Le Deunff, Erwan Malagoli, PhilippeOxford univ pressOxford; In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. A cross-combination of a Flow-Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to 'Enzyme-Substrate' interpretations, a Flow-Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. Use of a Flow-Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure-function mechanistic model of N uptake.
Databáze: OpenAIRE