Homotopical Analysis of 4d Chern-Simons Theory and Integrable Field Theories
Autor: | Marco Benini, Alexander Schenkel, Benoît Vicedo |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Communications in Mathematical Physics. 389:1417-1443 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-021-04304-7 |
Popis: | This paper provides a detailed study of $4$-dimensional Chern-Simons theory on $\mathbb{R}^2 \times \mathbb{C}P^1$ for an arbitrary meromorphic $1$-form $\omega$ on $\mathbb{C}P^1$. Using techniques from homotopy theory, the behaviour under finite gauge transformations of a suitably regularised version of the action proposed by Costello and Yamazaki is investigated. Its gauge invariance is related to boundary conditions on the surface defects located at the poles of $\omega$ that are determined by isotropic Lie subalgebras of a certain defect Lie algebra. The groupoid of fields satisfying such a boundary condition is proved to be equivalent to a groupoid that implements the boundary condition through a homotopy pullback, leading to the appearance of edge modes. The latter perspective is used to clarify how integrable field theories arise from $4$-dimensional Chern-Simons theory. Comment: 27 pages; v2: Final version accepted for publication in Communications in Mathematical Physics |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |