A de Branges-Beurling theorem for the full Fock space

Autor: Eli Shamovich, Robert T. W. Martin
Rok vydání: 2021
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 496:124765
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2020.124765
Popis: We extend the de Branges-Beurling theorem characterizing the shift-invariant spaces boundedly contained in the Hardy space of square-summable power series to the full Fock space over C d . Here, the full Fock space is identified as the Non-commutative (NC) Hardy Space of square-summable Taylor series in several non-commuting variables. We then proceed to study lattice operations on NC kernels and operator-valued multipliers between vector-valued Fock spaces. In particular, we demonstrate that the operator-valued Fock space multipliers with common coefficient range space form a bounded general lattice modulo a natural equivalence relation.
Databáze: OpenAIRE
Pro tento záznam nejsou dostupné žádné jednotky.