Expression of a familial amyotrophic lateral sclerosis-associated mutant human superoxide dismutase in yeast leads to decreased mitochondrial electron transport
Autor: | Diana S. Beattie, Reyna L. VanGilder, Michael R. Gunther, Jing Fang |
---|---|
Rok vydání: | 2004 |
Předmět: |
animal diseases
SOD1 Mutant Saccharomyces cerevisiae Biophysics Heme Mitochondrion Biology Biochemistry Electron Transport Complex IV Superoxide dismutase Electron Transport Complex III chemistry.chemical_compound Humans Molecular Biology Superoxide Dismutase Electron Transport Complex II Amyotrophic Lateral Sclerosis Wild type nutritional and metabolic diseases biology.organism_classification Molecular biology Yeast Mitochondria nervous system diseases chemistry biology.protein |
Zdroj: | Archives of Biochemistry and Biophysics. 431:207-214 |
ISSN: | 0003-9861 |
DOI: | 10.1016/j.abb.2004.08.009 |
Popis: | Strains of Saccharomyces cerevisiae that express either the wild type or the amyotrophic lateral sclerosis-associated mutant human copper–zinc superoxide dismutase (SOD1) proteins A4V and G93A, respectively, in a yeast SOD1-deficient parent strain were used to investigate the hypothesis that expression of a mutant SOD1 protein causes deficient mitochondrial electron transport as a possible mechanism for disease induction. Mitochondria isolated from the wild type SOD1-expressing yeast were identical to mitochondria from the parent strain in heme content and activities of complexes II, III, and IV. Mitochondria isolated from the A4V-expressing yeast had decreased rates of electron transport in complexes II + III, III, and IV and corresponding decreases in hemes b, c-c1, and a-a3 content compared to mitochondria from wild type human SOD1-expressing yeast. Mitochondria isolated from G93A-expressing yeast had decreased rates of electron transport in complex IV and probably in complex II with a corresponding decrease in heme a-a3 content. These results suggest that mutant SOD1-expression causes defective electron transport complex assembly and that the yeast system will provide an excellent model for the study of the mechanism of mutant SOD1-induced mitochondrial electron transport defects. |
Databáze: | OpenAIRE |
Externí odkaz: |