Inbreeding and disease avoidance in a free‐ranging koala population
Autor: | Jon Hanger, Deidré L. de Villiers, Romane H. Cristescu, Jo Loader, Anthony J. Schultz, Celine H. Frère |
---|---|
Rok vydání: | 2020 |
Předmět: |
Male
0106 biological sciences 0301 basic medicine Population Zoology Biology 010603 evolutionary biology 01 natural sciences Sexual Behavior Animal 03 medical and health sciences Genetics Inbreeding depression Animals Inbreeding avoidance Inbreeding Chlamydia Mating education Ecology Evolution Behavior and Systematics education.field_of_study Habitat fragmentation Chlamydia Infections Population decline 030104 developmental biology Biological dispersal Female Phascolarctidae |
Zdroj: | Molecular Ecology. 29:2416-2430 |
ISSN: | 1365-294X 0962-1083 |
Popis: | Habitat destruction and fragmentation are increasing globally, forcing surviving species into small, isolated populations. Isolated populations typically experience heightened inbreeding risk and associated inbreeding depression and population decline; although individuals in these populations may mitigate these risks through inbreeding avoidance strategies. For koalas, as dietary specialists already under threat in the northern parts of their range, increased habitat fragmentation and associated inbreeding costs are of great conservation concern. Koalas are known to display passive inbreeding avoidance through sex-biased dispersal, although population isolation will reduce dispersal pathways. We tested whether free-ranging koalas display active inbreeding avoidance behaviours. We used VHF tracking data, parentage reconstruction, and veterinary examination results to test whether free-ranging female koalas avoid mating with (a) more closely related males; and (b) males infected with sexually transmitted Chlamydia pecorum. We found no evidence that female koalas avoid mating with relatively more related available mates. In fact, as the relatedness of potential mates increases, so did inbreeding events. We also found no evidence that female koalas can avoid mating with males infected with C. pecorum. The absence of active inbreeding avoidance mechanisms in koalas is concerning from a conservation perspective, as small, isolated populations may be at even higher risk of inbreeding depression than expected. At risk koala populations may require urgent conservation interventions to augment gene flow and reduce inbreeding risks. Similarly, if koalas are not avoiding mating with individuals with chlamydial disease, populations may be at higher risk from disease than anticipated, further impacting population viability. |
Databáze: | OpenAIRE |
Externí odkaz: |