Creep behavior of submicron copper films under irradiation
Autor: | Fabien Onimus, Jean-Pierre Raskin, Pierre Lapouge, Thomas Pardoen, Michaël Coulombier, Yves Bréchet |
---|---|
Přispěvatelé: | CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Catholique de Louvain = Catholic University of Louvain (UCL), Microwave Lab, UCL, CeRMiN, Research Center in Micro and Nanoscopic Materials and Electronic Devices, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), UCL - SST/ICTM/ELEN - Pôle en ingénierie électrique, UCL - SST/IMMC/IMAP - Materials and process engineering |
Rok vydání: | 2017 |
Předmět: |
010302 applied physics
Materials science Polymers and Plastics Orders of magnitude (temperature) Metals and Alloys 02 engineering and technology Plasticity 021001 nanoscience & nanotechnology Microstructure 01 natural sciences [SPI.MAT]Engineering Sciences [physics]/Materials Electronic Optical and Magnetic Materials Stress (mechanics) MEMS Deformation mechanism Creep 0103 physical sciences Ceramics and Composites Forensic engineering Irradiation Composite material Deformation (engineering) 0210 nano-technology ComputingMilieux_MISCELLANEOUS |
Zdroj: | Acta Materialia Acta Materialia, Elsevier, 2017, 131, pp.77-87. ⟨10.1016/j.actamat.2017.03.056⟩ Acta Materialia, 2017, 131, pp.77-87. ⟨10.1016/j.actamat.2017.03.056⟩ Acta Materialia, Vol. 131, p. 77-87 (2017) |
ISSN: | 1359-6454 |
DOI: | 10.1016/j.actamat.2017.03.056 |
Popis: | The creep behavior under heavy ion irradiation of 200 nm and 500 nm thick annealed Cu films is characterized using on chip uniaxial microtensile test structures. The tests are performed at room temperature with an applied stress between 100 and 250 MPa and a damage rate of 5 × 10−4 and 6.3 × 10−4 dpa s−1. The deformation rates produced under irradiation are several orders of magnitude larger than when measured out of flux. The main advantage of this method is that it allows the simultaneous measurement of several tens of specimens fully irradiated over their entire thickness. The plasticity mechanisms appear remarkably more homogeneous during irradiation creep than under static loading. The creep power law involves a stress exponent equal to 5 depending only weakly on the microstructure of the films. The SEM and TEM microstructural observations suggest that the creep mechanism results from climb-assisted glide of dislocations as rationalized by a simple closed-form model. |
Databáze: | OpenAIRE |
Externí odkaz: |