ANALYSIS OF SINGLE AND ENSEMBLE MACHINE LEARNING CLASSIFIERS FOR PHISHING ATTACKS DETECTION
Autor: | Ajiboye I. K, A M Oyelakin, Mustapha I. O, Alimi O. M |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Computer engineering. Computer hardware
Recall business.industry Computer science Decision tree Ensemble Machine Learning Algorithms Machine learning computer.software_genre Internet security Classification Phishing Ensemble learning Random forest TK7885-7895 Identification (information) QA76.75-76.765 Internet Security Classifier (linguistics) Artificial intelligence Computer software business computer Phishing Attacks |
Zdroj: | International Journal of Software Engineering and Computer Systems, Vol 7, Iss 2 (2021) |
ISSN: | 2180-0650 2289-8522 |
Popis: | Phishing attacks have been used in different ways to harvest the confidential information of unsuspecting internet users. To stem the tide of phishing-based attacks, several machine learning techniques have been proposed in the past. However, fewer studies have considered investigating single and ensemble machine learning-based models for the classification of phishing attacks. This study carried out performance analysis of selected single and ensemble machine learning (ML) classifiers in phishing classification. The focus is to investigate how these algorithms behave in the classification of phishing attacks in the chosen dataset. Logistic Regression and Decision Trees were chosen as single learning classifiers while simple voting techniques and Random Forest were used as the ensemble machine learning algorithms. Accuracy, Precision, Recall and F1-score were used as performance metrics. Logistic Regression algorithm recorded 0.86 as accuracy, 0.89 as precision, 0.87 as recall and 0.81 as F1-score. Similarly, the Decision Trees classifier achieved an accuracy of 0.87, 0.83 for precision, 0.88 for recall and 0.81 for F1-score. In the voting ensemble, accuracy of 0.92 was achieved. 0.90 was obtained for precision, 0.92 for recall and 0.92 for F1-score. Random Forest algorithm recorded 0.98, 0.97, 0.98 and 0.97 as accuracy, precision, recall and F1-score respectively. From the experimental analyses, Random Forest algorithm outperformed simple averaging classifier and the two single algorithms used for phishing URL detection. The study established that the ensemble techniques that were used for the experimentations are more efficient for phishing URL identification compared to the single classifiers. |
Databáze: | OpenAIRE |
Externí odkaz: |