A finite element model for investigating effects of aerial architecture on tree oscillations

Autor: Dominique Sellier, Thierry Fourcaud, Patrick Lac
Přispěvatelé: LABORATOIRE DE RHEOLOGIE DU BOIS DE BORDEAUX (LRBB), Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS), Écologie fonctionnelle et physique de l'environnement (EPHYSE - UR1263), Institut National de la Recherche Agronomique (INRA), Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1, BotAnique et BioinforMatique de l'Architecture des Plantes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Recherche pour le Développement (IRD [France-Ouest])-Centre National de la Recherche Scientifique (CNRS), Écologie fonctionnelle et physique de l'environnement (EPHYSE), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD [France-Sud]), ProdInra, Migration
Rok vydání: 2006
Předmět:
0106 biological sciences
Physiology
Plant Science
F50 - Anatomie et morphologie des plantes
Plant Roots
Damping
01 natural sciences
Trees
[SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture
forestry

Mouvement
Aerodynamic drag
ComputingMilieux_MISCELLANEOUS
Oscillation frequencies
Tree biomechanics
Mathematics
Port de la plante
Plant Stems
U10 - Informatique
mathématiques et statistiques

[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]
PIN MARITIME
Stiffness
NUMERICAL ANALYSIS OSCILLATION FREQUENCIES
Finite element method
Biomechanical Phenomena
Dynamics
Anatomie végétale
[SDV.SA.SF] Life Sciences [q-bio]/Agricultural sciences/Silviculture
forestry

medicine.symptom
Biological system
Modèle mathématique
Numerical analysis
Computation
Arbre
Models
Biological

Vibration
010603 evolutionary biology
Botany
medicine
K70 - Dégâts causés aux forêts et leur protection
15. Life on land
Pinus
Tree (graph theory)
K10 - Production forestière
Nonlinear system
Partie aérienne
Propriété mécanique
Dissipative system
010606 plant biology & botany
Zdroj: Tree Physiology
Tree Physiology, Oxford University Press (OUP): Policy B-Oxford Open Option B, 2006, 26, p. 799-806. ⟨10.1093/treephys/26.6.799⟩
Tree Physiology, Oxford University Press (OUP): Policy B-Oxford Open Option B, 2006, 26, pp.799-806
ISSN: 1758-4469
0829-318X
DOI: 10.1093/treephys/26.6.799
Popis: A finite element model was developed to study the influence of aerial architecture on the structural dynamics of trees. The model combines a complete description of the axes of the aerial architecture of the plant with numerical techniques suitable for dynamic nonlinear analyses. Trees were modeled on the basis of morphological measurements that were previously made on three 4-year-old Pinus pinaster Ait. saplings originating from even-aged stands. Calculated and measured oscillations were compared to evaluate model behavior. The computations allowed the characteristics of the fundamental mode of vibration to be estimated with satisfactory accuracy. Inclusion of a topological description of the aerial system in a mechanical model provided insight into the effect of tree architecture on tree dynamic behavior. Simplifications of the branching pattern in the model led to overestimations of the natural swaying frequency of saplings by 10 to 20%. Inadequate values of stem and root anchorage stiffness resulted in errors of 10 to 20%. Modeling results indicated that aerodynamic drag of needles is responsible for 80% of the damping in the studied trees. Additionally, damping of stem movement is reduced by one half when branch oscillations are not considered. It appears that the efficiency of the dissipative mechanisms depends directly on crown topology.
Databáze: OpenAIRE