Harmony in the Light of Computational Ludics

Autor: Yuta Takahashi, Alberto Naibo
Přispěvatelé: Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), Université Paris 1 Panthéon-Sorbonne - UFR Philosophie (UP1 UFR10), Université Paris 1 Panthéon-Sorbonne (UP1), Ochanomizu University, ANR-17-CE38-0003,PROGRAMme,Qu'est-ce qu'un programme? Perspectives historiques et philosophiques(2017), ANR-17-FRAL-0003,FFIUM,Formalisme, formalisation, intuition et compréhension en mathématiques : de la pratique informelle aux systèmes formels et retour(2017), ANR-20-CE27-0004,GoA,La géométrie des algorithmes(2020)
Rok vydání: 2021
Předmět:
Zdroj: Electronic Proceedings in Theoretical Computer Science
Electronic Proceedings in Theoretical Computer Science, EPTCS, 2021, Proceedings Second Joint International Workshop on Linearity & Trends in Linear Logic and Applications (Linearity&TLLA 2020), Online, 29-30 June 2020, 353, pp.132-156. ⟨10.4204/EPTCS.353.7⟩
ISSN: 2075-2180
DOI: 10.4204/eptcs.353.7
Popis: Prawitz formulated the so-called inversion principle as one of the characteristic features of Gentzen's intuitionistic natural deduction. In the literature on proof-theoretic semantics, this principle is often coupled with another that is called the recovery principle. By adopting the Computational Ludics framework, we reformulate these principles into one and the same condition, which we call the harmony condition. We show that this reformulation allows us to reveal two intuitive ideas standing behind these principles: the idea of "containment" present in the inversion principle, and the idea that the recovery principle is the "converse" of the inversion principle. We also formulate two other conditions in the Computational Ludics framework, and we show that each of them is equivalent to the harmony condition.
Comment: In Proceedings Linearity&TLLA 2020, arXiv:2112.14305
Databáze: OpenAIRE