Can grid cell ensembles represent multiple spaces?

Autor: Davide Spalla, Alessandro Treves, Alexis Dubreuil, Rémi Monasson, Sophie Rosay
Přispěvatelé: Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS), Laboratoire de physiologie cérébrale (LPC - UMR 8118), Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Physique Statistique et Inférence pour la Biologie, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7), Monasson, Remi, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
saddle-point equations
Theoretical computer science
Computer science
Cognitive Neuroscience
[SDV]Life Sciences [q-bio]
Population
ENCODE
Space (mathematics)
01 natural sciences
[PHYS.COND.CM-SM] Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
03 medical and health sciences
0302 clinical medicine
Arts and Humanities (miscellaneous)
storage capacity
0103 physical sciences
Grid reference
Feature (machine learning)
Animals
Entorhinal Cortex
Grid Cells
Computer Simulation
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
010306 general physics
education
ComputingMilieux_MISCELLANEOUS
030304 developmental biology
Hexagonal tiling
0303 health sciences
education.field_of_study
continuous attractor
Grid cell
cognitive map
spatial memory
Manifold
[SDV] Life Sciences [q-bio]
Settore M-PSI/02 - Psicobiologia e Psicologia Fisiologica
Space Perception
Metric (mathematics)
Neural Networks
Computer

Nerve Net
030217 neurology & neurosurgery
Zdroj: Neural Computation
Neural Computation, Massachusetts Institute of Technology Press (MIT Press), 2019, 31 (12), pp.2324-2347. ⟨10.1162/neco_a_01237⟩
Neural Computation, 2019, 31 (12), pp.2324-2347. ⟨10.1162/neco_a_01237⟩
ISSN: 0899-7667
1530-888X
DOI: 10.1101/527192
Popis: The way grid cells represent space in the rodent brain has been a striking discovery, with theoret-ical implications still unclear. Differently from hippocampal place cells, which are known to encode multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space through a single low dimensional manifold, in which coactivity relations between different neurons are preserved when the environment is changed. Does it have to be so? Here, we compute - using two alternative mathematical models - the storage capacity of a population of grid-like units, em-bedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct representations of multiple environments can coexist, as existing models for grid cells have the po-tential to express several sets of hexagonal grid patterns, challenging the view of a universal grid map. This suggests that a population of grid cells can encode multiple non-congruent metric rela-tionships, a feature that could in principle allow a grid-like code to represent environments with a variety of different geometries and possibly conceptual and cognitive spaces, which may be expected to entail such context-dependent metric relationships.
Databáze: OpenAIRE