Optical Investigation of Sooting Propensity of n-Dodecane Pilot/Lean-Premixed Methane Dual-Fuel Combustion in a Rapid Compression-Expansion Machine
Autor: | Gilles Bruneaux, Konstantinos Boulouchos, Beat von Rotz, Rolf Bombach, Kai Herrmann, Aleš Srna |
---|---|
Přispěvatelé: | Paul Scherrer Institute (PSI), IFP Energies nouvelles (IFPEN), Institut Carnot IFPEN Transports Energie, IFP Energies nouvelles (IFPEN)-IFP Energies nouvelles (IFPEN), University of Applied Sciences and Arts Northwestern Switzerland (HES-SO), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich) |
Rok vydání: | 2018 |
Předmět: |
Materials science
020209 energy 02 engineering and technology General Medicine [SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] Combustion Compression (physics) 7. Clean energy Methane [SPI.AUTO]Engineering Sciences [physics]/Automatic Dual (category theory) chemistry.chemical_compound Combustion and combustion processes 020303 mechanical engineering & transports 0203 mechanical engineering chemistry Chemical engineering 13. Climate action Fuel injection N-dodecane 0202 electrical engineering electronic engineering information engineering Particulate matter (PM) |
Zdroj: | SAE International Journal of Engines SAE International Journal of Engines, SAE International, 2018, 11 (6), pp.1049-1068. ⟨10.4271/2018-01-0258⟩ |
ISSN: | 1946-3944 1946-3936 |
DOI: | 10.4271/2018-01-0258 |
Popis: | International audience; The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine to achieve engine relevant pressure and temperature conditions at start of pilot injection. A Diesel injector with a 100 µm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous OH* chemiluminescence and Schlieren imaging. The sooting behavior of the flame has been characterized using the 2D-DBI imaging methodology. The apparent soot black-body temperature has been measured 1D-resolved along the injector axis by applying an imaging spectrograph. Addition of methane into the air charge considerably prolongs the ignition delay with an increasing effect under less reactive conditions and with higher methane equivalence ratios. Therefore, the influence of methane on the formation of soot is twofold: in case of short pilot injection, the presence of methane was found to decrease the soot formation due to the leaner pilot fuel mixture at time of ignition. For longer pilot fuel injections, methane enhances the soot production by decreasing oxygen availability and introducing additional carbon. In all cases, methane strongly defers the oxidation of soot due to the lower availability of oxygen. |
Databáze: | OpenAIRE |
Externí odkaz: |